These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Flash heating leads to low frictional strength of crustal rocks at earthquake slip rates. Goldsby DL; Tullis TE Science; 2011 Oct; 334(6053):216-8. PubMed ID: 21998385 [TBL] [Abstract][Full Text] [Related]
4. Illuminating the physics of dynamic friction through laboratory earthquakes on thrust faults. Tal Y; Rubino V; Rosakis AJ; Lapusta N Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21095-21100. PubMed ID: 32817539 [TBL] [Abstract][Full Text] [Related]
5. Friction falls towards zero in quartz rock as slip velocity approaches seismic rates. Di Toro G; Goldsby DL; Tullis TE Nature; 2004 Jan; 427(6973):436-9. PubMed ID: 14749829 [TBL] [Abstract][Full Text] [Related]
6. Stable creeping fault segments can become destructive as a result of dynamic weakening. Noda H; Lapusta N Nature; 2013 Jan; 493(7433):518-21. PubMed ID: 23302798 [TBL] [Abstract][Full Text] [Related]
7. The role of pore fluids in supershear earthquake ruptures. Pampillón P; Santillán D; Mosquera JC; Cueto-Felgueroso L Sci Rep; 2023 Jan; 13(1):398. PubMed ID: 36624113 [TBL] [Abstract][Full Text] [Related]
8. Pulse-like and crack-like ruptures in experiments mimicking crustal earthquakes. Lu X; Lapusta N; Rosakis AJ Proc Natl Acad Sci U S A; 2007 Nov; 104(48):18931-6. PubMed ID: 18025479 [TBL] [Abstract][Full Text] [Related]
9. Frictional ageing from interfacial bonding and the origins of rate and state friction. Li Q; Tullis TE; Goldsby D; Carpick RW Nature; 2011 Nov; 480(7376):233-6. PubMed ID: 22139421 [TBL] [Abstract][Full Text] [Related]
11. Microphysical Modeling of Carbonate Fault Friction at Slip Rates Spanning the Full Seismic Cycle. Chen J; Niemeijer AR; Spiers CJ J Geophys Res Solid Earth; 2021 Mar; 126(3):e2020JB021024. PubMed ID: 33868888 [TBL] [Abstract][Full Text] [Related]
12. Molecular origin of sliding friction and flash heating in rock and heterogeneous materials. Piroozan N; Sahimi M Sci Rep; 2020 Dec; 10(1):22264. PubMed ID: 33335303 [TBL] [Abstract][Full Text] [Related]
16. Mechanical behaviour of fluid-lubricated faults. Cornelio C; Spagnuolo E; Di Toro G; Nielsen S; Violay M Nat Commun; 2019 Mar; 10(1):1274. PubMed ID: 30894547 [TBL] [Abstract][Full Text] [Related]
17. Frictional instabilities in clay illuminate the origin of slow earthquakes. Volpe G; Collettini C; Taddeucci J; Marone C; Pozzi G Sci Adv; 2024 Jun; 10(26):eadn0869. PubMed ID: 38941467 [TBL] [Abstract][Full Text] [Related]
18. Cascading elastic perturbation in Japan due to the 2012 M w 8.6 Indian Ocean earthquake. Delorey AA; Chao K; Obara K; Johnson PA Sci Adv; 2015 Oct; 1(9):e1500468. PubMed ID: 26601289 [TBL] [Abstract][Full Text] [Related]
19. The equation of motion for supershear frictional rupture fronts. Kammer DS; Svetlizky I; Cohen G; Fineberg J Sci Adv; 2018 Jul; 4(7):eaat5622. PubMed ID: 30035229 [TBL] [Abstract][Full Text] [Related]
20. Slip complexity in dynamic models of earthquake faults. Langer JS; Carlson JM; Myers CR; Shaw BE Proc Natl Acad Sci U S A; 1996 Apr; 93(9):3825-9. PubMed ID: 11607671 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]