These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
507 related articles for article (PubMed ID: 28660954)
1. Electromagnetic theories of surface-enhanced Raman spectroscopy. Ding SY; You EM; Tian ZQ; Moskovits M Chem Soc Rev; 2017 Jul; 46(13):4042-4076. PubMed ID: 28660954 [TBL] [Abstract][Full Text] [Related]
2. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles. Nam JM; Oh JW; Lee H; Suh YD Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009 [TBL] [Abstract][Full Text] [Related]
3. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy. Wei H; Xu H Nanoscale; 2013 Nov; 5(22):10794-805. PubMed ID: 24113688 [TBL] [Abstract][Full Text] [Related]
5. Competitive reaction pathway for site-selective conjugation of Raman dyes to hotspots on gold nanorods for greatly enhanced SERS performance. Huang H; Wang JH; Jin W; Li P; Chen M; Xie HH; Yu XF; Wang H; Dai Z; Xiao X; Chu PK Small; 2014 Oct; 10(19):4012-9. PubMed ID: 24947686 [TBL] [Abstract][Full Text] [Related]
6. Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes. Lee JH; You MH; Kim GH; Nam JM Nano Lett; 2014 Nov; 14(11):6217-25. PubMed ID: 25275930 [TBL] [Abstract][Full Text] [Related]
8. Confined Gaussian-distributed electromagnetic field of tin(II) chloride-sensitized surface-enhanced Raman scattering (SERS) optical fiber probe: From localized surface plasmon resonance (LSPR) to waveguide propagation. Long Y; Li H; Du Z; Geng M; Liu Z J Colloid Interface Sci; 2021 Jan; 581(Pt B):698-708. PubMed ID: 32814193 [TBL] [Abstract][Full Text] [Related]
9. Clusters-based silver nanorings: An active substrate for surface-enhanced Raman scattering. Hossain MK; Drmosh QA Spectrochim Acta A Mol Biomol Spectrosc; 2021 Dec; 263():120141. PubMed ID: 34280795 [TBL] [Abstract][Full Text] [Related]
10. Evanescent field excited plasmonic nano-antenna for improving SERS signal. Gu Y; Li H; Xu S; Liu Y; Xu W Phys Chem Chem Phys; 2013 Oct; 15(37):15494-8. PubMed ID: 23942757 [TBL] [Abstract][Full Text] [Related]
11. Investigation on the second part of the electromagnetic SERS enhancement and resulting fabrication strategies of anisotropic plasmonic arrays. Cialla D; Petschulat J; Hübner U; Schneidewind H; Zeisberger M; Mattheis R; Pertsch T; Schmitt M; Möller R; Popp J Chemphyschem; 2010 Jun; 11(9):1918-24. PubMed ID: 20401896 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of electromagnetic enhancement of surface enhanced hyper Raman scattering using plasmonic properties of binary active sites in single Ag nanoaggregates. Itoh T; Yoshikawa H; Yoshida K; Biju V; Ishikawa M J Chem Phys; 2009 Jun; 130(21):214706. PubMed ID: 19508086 [TBL] [Abstract][Full Text] [Related]
13. On-Demand Electromagnetic Hotspot Generation in Surface-Enhanced Raman Scattering Substrates via "Add-On" Plasmonic Patch. Gupta P; Luan J; Wang Z; Cao S; Bae SH; Naik RR; Singamaneni S ACS Appl Mater Interfaces; 2019 Oct; 11(41):37939-37946. PubMed ID: 31525866 [TBL] [Abstract][Full Text] [Related]
14. Silver nanoparticles, nanoneedles and nanorings: impact of electromagnetic near-field on surface-enhanced Raman scattering. Hossain MK; Drmosh QA; Arifuzzaman M Phys Chem Chem Phys; 2022 Apr; 24(15):8787-8799. PubMed ID: 35352733 [TBL] [Abstract][Full Text] [Related]
15. Centimeter-scale-homogeneous SERS substrates with seven-order global enhancement through thermally controlled plasmonic nanostructures. Liu H; Zhang X; Zhai T; Sander T; Chen L; Klar PJ Nanoscale; 2014 May; 6(10):5099-105. PubMed ID: 24728009 [TBL] [Abstract][Full Text] [Related]