BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 28661459)

  • 1. Macrophages and Phospholipases at the Intersection between Inflammation and the Pathogenesis of HIV-1 Infection.
    Spadaro F; Cecchetti S; Fantuzzi L
    Int J Mol Sci; 2017 Jun; 18(7):. PubMed ID: 28661459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Persistent inflammation in HIV infection: established concepts, new perspectives.
    Nasi M; Pinti M; Mussini C; Cossarizza A
    Immunol Lett; 2014 Oct; 161(2):184-8. PubMed ID: 24487059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phospholipases: at the crossroads of the immune system and the pathogenesis of HIV-1 infection.
    Cecchetti S; Spadaro F; Gessani S; Podo F; Fantuzzi L
    J Leukoc Biol; 2017 Jan; 101(1):53-75. PubMed ID: 27803127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immune activation in the course of HIV-1 infection: Causes, phenotypes and persistence under therapy.
    Younas M; Psomas C; Reynes J; Corbeau P
    HIV Med; 2016 Feb; 17(2):89-105. PubMed ID: 26452565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current topics in HIV pathogenesis, part 2: Inflammation drives a Warburg-like effect on the metabolism of HIV-infected subjects.
    Aounallah M; Dagenais-Lussier X; El-Far M; Mehraj V; Jenabian MA; Routy JP; van Grevenynghe J
    Cytokine Growth Factor Rev; 2016 Apr; 28():1-10. PubMed ID: 26851985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HIV-1 Persistence and Chronic Induction of Innate Immune Responses in Macrophages.
    Akiyama H; Gummuluru S
    Viruses; 2020 Jun; 12(7):. PubMed ID: 32630058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systemic activation of the immune system in HIV infection: The role of the immune complexes (hypothesis).
    Korolevskaya LB; Shmagel KV; Shmagel NG; Saidakova EV
    Med Hypotheses; 2016 Mar; 88():53-6. PubMed ID: 26880638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased inflammation but similar physical composition and function in older-aged, HIV-1 infected subjects.
    Wallet MA; Buford TW; Joseph AM; Sankuratri M; Leeuwenburgh C; Pahor M; Manini T; Sleasman JW; Goodenow MM
    BMC Immunol; 2015 Jul; 16():43. PubMed ID: 26204934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circulating LPS and (1→3)-β-D-Glucan: A Folie à Deux Contributing to HIV-Associated Immune Activation.
    Ramendra R; Isnard S; Mehraj V; Chen J; Zhang Y; Finkelman M; Routy JP
    Front Immunol; 2019; 10():465. PubMed ID: 30967860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monocyte/Macrophage-Mediated Innate Immunity in HIV-1 Infection: From Early Response to Late Dysregulation and Links to Cardiovascular Diseases Onset.
    Teer E; Joseph DE; Glashoff RH; Faadiel Essop M
    Virol Sin; 2021 Aug; 36(4):565-576. PubMed ID: 33400091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Innate immune sensing of HIV infection.
    Silvin A; Manel N
    Curr Opin Immunol; 2015 Feb; 32():54-60. PubMed ID: 25617674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gut commensal microbes do not represent a dominant antigenic source for continuous CD4+ T-cell activation during HIV-1 infection.
    Zimmermann K; Bastidas S; Knecht L; Kuster H; Vavricka SR; Günthard HF; Oxenius A
    Eur J Immunol; 2015 Nov; 45(11):3107-13. PubMed ID: 26345361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gut epithelial barrier dysfunction in human immunodeficiency virus-hepatitis C virus coinfected patients: Influence on innate and acquired immunity.
    Márquez M; Fernández Gutiérrez del Álamo C; Girón-González JA
    World J Gastroenterol; 2016 Jan; 22(4):1433-48. PubMed ID: 26819512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macrophages accumulate in the gut mucosa of untreated HIV-infected patients.
    Allers K; Fehr M; Conrad K; Epple HJ; Schürmann D; Geelhaar-Karsch A; Schinnerling K; Moos V; Schneider T
    J Infect Dis; 2014 Mar; 209(5):739-48. PubMed ID: 24133185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of chemokine/cytokine network during in vitro differentiation and HIV-1 infection of human monocytes: possible importance in the pathogenesis of AIDS.
    Fantuzzi L; Conti L; Gauzzi MC; Eid P; Del Cornò M; Varano B; Canini I; Belardelli F; Gessani S
    J Leukoc Biol; 2000 Sep; 68(3):391-9. PubMed ID: 10985256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The HIV Reservoir in Monocytes and Macrophages.
    Wong ME; Jaworowski A; Hearps AC
    Front Immunol; 2019; 10():1435. PubMed ID: 31297114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monocyte and CD4+ T-cell antiviral and innate responses associated with HIV-1 inflammation and cognitive impairment.
    Sharma V; Bryant C; Montero M; Creegan M; Slike B; Krebs SJ; Ratto-Kim S; Valcour V; Sithinamsuwan P; Chalermchai T; Eller MA; Bolton DL;
    AIDS; 2020 Jul; 34(9):1289-1301. PubMed ID: 32598115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell-to-Cell Spread of HIV and Viral Pathogenesis.
    Law KM; Satija N; Esposito AM; Chen BK
    Adv Virus Res; 2016; 95():43-85. PubMed ID: 27112280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction of Heme Oxygenase-1 Deficiency and Associated Glutamate-Mediated Neurotoxicity Is a Highly Conserved HIV Phenotype of Chronic Macrophage Infection That Is Resistant to Antiretroviral Therapy.
    Gill AJ; Kovacsics CE; Vance PJ; Collman RG; Kolson DL
    J Virol; 2015 Oct; 89(20):10656-67. PubMed ID: 26269184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monocytes as regulators of inflammation and HIV-related comorbidities during cART.
    Anzinger JJ; Butterfield TR; Angelovich TA; Crowe SM; Palmer CS
    J Immunol Res; 2014; 2014():569819. PubMed ID: 25025081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.