These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 28661648)

  • 1. Graphene-Fiber-Based Supercapacitors Favor N-Methyl-2-pyrrolidone/Ethyl Acetate as the Spinning Solvent/Coagulant Combination.
    He N; Pan Q; Liu Y; Gao W
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):24568-24576. PubMed ID: 28661648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porous Graphene-Carbon Nanotube Scaffolds for Fiber Supercapacitors.
    Park H; Ambade RB; Noh SH; Eom W; Koh KH; Ambade SB; Lee WJ; Kim SH; Han TH
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9011-9022. PubMed ID: 30653285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High Electrochemical Capacity MnO
    Tian X; Cheng X; Liao S; Chen J; Lv P; Wei Q
    ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37908058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Performance Supercapacitors from Niobium Nanowire Yarns.
    Mirvakili SM; Mirvakili MN; Englezos P; Madden JD; Hunter IW
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):13882-8. PubMed ID: 26068246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conductive graphene fibers for wire-shaped supercapacitors strengthened by unfunctionalized few-walled carbon nanotubes.
    Ma Y; Li P; Sedloff I; Zhang X; Zhang H; Liu J
    ACS Nano; 2015 Feb; 9(2):1352-9. PubMed ID: 25625807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All-Graphene Oxide Flexible Solid-State Supercapacitors with Enhanced Electrochemical Performance.
    Ogata C; Kurogi R; Awaya K; Hatakeyama K; Taniguchi T; Koinuma M; Matsumoto Y
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26151-26160. PubMed ID: 28715632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembly of MnO/CNC/rGO fibers from colloidal liquid crystal for flexible supercapacitors via a continuous one-process method.
    Yuan H; Pan H; Meng X; Zhu C; Liu S; Chen Z; Ma J; Zhu S
    Nanotechnology; 2019 Nov; 30(46):465702. PubMed ID: 31408856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-performance graphene-based supercapacitors made by a scalable blade-coating approach.
    Wang B; Liu J; Mirri F; Pasquali M; Motta N; Holmes JW
    Nanotechnology; 2016 Apr; 27(16):165402. PubMed ID: 26953864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D hierarchical porous V
    Hu T; Liu Y; Zhang Y; Chen M; Zheng J; Tang J; Meng C
    J Colloid Interface Sci; 2018 Dec; 531():382-393. PubMed ID: 30041115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boosting Lithium Storage Properties of MOF Derivatives through a Wet-Spinning Assembled Fiber Strategy.
    Zhang L; Liu W; Shi W; Xu X; Mao J; Li P; Ye C; Yin R; Ye S; Liu X; Cao X; Gao C
    Chemistry; 2018 Sep; 24(52):13792-13799. PubMed ID: 29992663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors.
    Zheng Q; Cai Z; Ma Z; Gong S
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3263-71. PubMed ID: 25625769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Layer-by-layer self-assembled multilayer films composed of graphene/polyaniline bilayers: high-energy electrode materials for supercapacitors.
    Sarker AK; Hong JD
    Langmuir; 2012 Aug; 28(34):12637-46. PubMed ID: 22866750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid fibers made of molybdenum disulfide, reduced graphene oxide, and multi-walled carbon nanotubes for solid-state, flexible, asymmetric supercapacitors.
    Sun G; Zhang X; Lin R; Yang J; Zhang H; Chen P
    Angew Chem Int Ed Engl; 2015 Apr; 54(15):4651-6. PubMed ID: 25694387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Conductive Ti
    Zhang J; Seyedin S; Qin S; Wang Z; Moradi S; Yang F; Lynch PA; Yang W; Liu J; Wang X; Razal JM
    Small; 2019 Feb; 15(8):e1804732. PubMed ID: 30653274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible fiber-shaped supercapacitors based on graphene/polyaniline hybrid fibers with high energy density and capacitance.
    Wu Y; Meng Z; Yang J; Xue Y
    Nanotechnology; 2021 Apr; 32(29):. PubMed ID: 33831848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular-level uniform graphene/polyaniline composite film for flexible supercapacitors with high-areal capacitance.
    Wang P; Shao F; Li B; Su Y; Yang Z; Hu N; Zhang Y
    Nanotechnology; 2023 Feb; 34(17):. PubMed ID: 36689767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of Hierarchical CNT/rGO-Supported MnMoO
    Mu X; Du J; Zhang Y; Liang Z; Wang H; Huang B; Zhou J; Pan X; Zhang Z; Xie E
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):35775-35784. PubMed ID: 28948775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternately Dipping Method to Prepare Graphene Fiber Electrodes for Ultra-high-Capacitance Fiber Supercapacitors.
    Qu G; Zhou Y; Zhang J; Xiong L; Yue Q; Kang Y
    iScience; 2020 Aug; 23(8):101396. PubMed ID: 32777775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wet-spinning assembly and in situ electrodeposition of carbon nanotube-based composite fibers for high energy density wire-shaped asymmetric supercapacitor.
    Ren C; Yan Y; Sun B; Gu B; Chou TW
    J Colloid Interface Sci; 2020 Jun; 569():298-306. PubMed ID: 32120137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructure Design of Carbonaceous Fibers: A Promising Strategy toward High-Performance Weaveable/Wearable Supercapacitors.
    Yu C; An J; Zhou R; Xu H; Zhou J; Chen Q; Sun G; Huang W
    Small; 2020 Jun; 16(25):e2000653. PubMed ID: 32432831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.