These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 28661649)

  • 1. Subfilamentary Networks Cause Cycle-to-Cycle Variability in Memristive Devices.
    Baeumer C; Valenta R; Schmitz C; Locatelli A; Menteş TO; Rogers SP; Sala A; Raab N; Nemsak S; Shim M; Schneider CM; Menzel S; Waser R; Dittmann R
    ACS Nano; 2017 Jul; 11(7):6921-6929. PubMed ID: 28661649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Filament Growth and Resistive Switching in Hafnium Oxide Memristive Devices.
    Dirkmann S; Kaiser J; Wenger C; Mussenbrock T
    ACS Appl Mater Interfaces; 2018 May; 10(17):14857-14868. PubMed ID: 29601180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Observation of Threshold Defect Behavior in Memristive Devices with Operando X-ray Microscopy.
    Liu H; Dong Y; Cherukara MJ; Sasikumar K; Narayanan B; Cai Z; Lai B; Stan L; Hong S; Chan MKY; Sankaranarayanan SKRS; Zhou H; Fong DD
    ACS Nano; 2018 May; 12(5):4938-4945. PubMed ID: 29715007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes.
    Baeumer C; Schmitz C; Marchewka A; Mueller DN; Valenta R; Hackl J; Raab N; Rogers SP; Khan MI; Nemsak S; Shim M; Menzel S; Schneider CM; Waser R; Dittmann R
    Nat Commun; 2016 Aug; 7():12398. PubMed ID: 27539213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resistive Switching Memristor: On the Direct Observation of Physical Nature of Parameter Variability.
    Wang Z; Xiao W; Yang H; Zhang S; Zhang Y; Sun K; Wang T; Fu Y; Wang Q; Zhang J; Hasegawa T; He D
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1557-1567. PubMed ID: 34957821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water-Mediated Ionic Migration in Memristive Nanowires with a Tunable Resistive Switching Mechanism.
    Milano G; Raffone F; Luebben M; Boarino L; Cicero G; Valov I; Ricciardi C
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):48773-48780. PubMed ID: 33052645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectromicroscopic insights for rational design of redox-based memristive devices.
    Baeumer C; Schmitz C; Ramadan AH; Du H; Skaja K; Feyer V; Müller P; Arndt B; Jia CL; Mayer J; De Souza RA; Michael Schneider C; Waser R; Dittmann R
    Nat Commun; 2015 Oct; 6():8610. PubMed ID: 26477940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TEM Nanostructural Investigation of Ag-Conductive Filaments in Polycrystalline ZnO-Based Resistive Switching Devices.
    Bejtka K; Milano G; Ricciardi C; Pirri CF; Porro S
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29451-29460. PubMed ID: 32508083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topotactic Phase Transition Driving Memristive Behavior.
    Nallagatla VR; Heisig T; Baeumer C; Feyer V; Jugovac M; Zamborlini G; Schneider CM; Waser R; Kim M; Jung CU; Dittmann R
    Adv Mater; 2019 Oct; 31(40):e1903391. PubMed ID: 31441160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reliable Memristive Switching Memory Devices Enabled by Densely Packed Silver Nanocone Arrays as Electric-Field Concentrators.
    You BK; Kim JM; Joe DJ; Yang K; Shin Y; Jung YS; Lee KJ
    ACS Nano; 2016 Oct; 10(10):9478-9488. PubMed ID: 27718554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward Controlling Filament Size and Location for Resistive Switches via Nanoparticle Exsolution at Oxide Interfaces.
    Spring J; Sediva E; Hood ZD; Gonzalez-Rosillo JC; O'Leary W; Kim KJ; Carrillo AJ; Rupp JLM
    Small; 2020 Oct; 16(41):e2003224. PubMed ID: 32939986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stochastic memristive devices for computing and neuromorphic applications.
    Gaba S; Sheridan P; Zhou J; Choi S; Lu W
    Nanoscale; 2013 Jul; 5(13):5872-8. PubMed ID: 23698627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrically Controlled Nano and Micro Actuation in Memristive Switching Devices with On-Chip Gas Encapsulation.
    Kos D; Astier HPAG; Martino GD; Mertens J; Ohadi H; De Fazio D; Yoon D; Zhao Z; Kuhn A; Ferrari AC; Ford CJB; Baumberg JJ
    Small; 2018 Aug; 14(34):e1801599. PubMed ID: 30035854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing Reliability of Studies on Single Filament Memristive Switching via an Unconventional cAFM Approach.
    Carstens N; Vahl A; Gronenberg O; Strunskus T; Kienle L; Faupel F; Hassanien A
    Nanomaterials (Basel); 2021 Jan; 11(2):. PubMed ID: 33498494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A neuromorphic systems approach to in-memory computing with non-ideal memristive devices: from mitigation to exploitation.
    Payvand M; Nair MV; Müller LK; Indiveri G
    Faraday Discuss; 2019 Feb; 213(0):487-510. PubMed ID: 30357205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Memristive tri-stable resistive switching at ruptured conducting filaments of a Pt/TiO₂/Pt cell.
    Yoon KJ; Lee MH; Kim GH; Song SJ; Seok JY; Han S; Yoon JH; Kim KM; Hwang CS
    Nanotechnology; 2012 May; 23(18):185202. PubMed ID: 22516621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multilayer redox-based HfO
    Park S; Spetzler B; Ivanov T; Ziegler M
    Sci Rep; 2022 Oct; 12(1):18266. PubMed ID: 36309573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomically Thin Femtojoule Memristive Device.
    Zhao H; Dong Z; Tian H; DiMarzi D; Han MG; Zhang L; Yan X; Liu F; Shen L; Han SJ; Cronin S; Wu W; Tice J; Guo J; Wang H
    Adv Mater; 2017 Dec; 29(47):. PubMed ID: 29067743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Memristive Devices with Highly Repeatable Analog States Boosted by Graphene Quantum Dots.
    Wang C; He W; Tong Y; Zhang Y; Huang K; Song L; Zhong S; Ganeshkumar R; Zhao R
    Small; 2017 May; 13(20):. PubMed ID: 28296020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning Ionic Transport in Memristive Devices by Graphene with Engineered Nanopores.
    Lee J; Du C; Sun K; Kioupakis E; Lu WD
    ACS Nano; 2016 Mar; 10(3):3571-9. PubMed ID: 26954948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.