These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 28661691)

  • 21. Removal of Bacteria from Solids by Bubbles: Effect of Solid Wettability, Interaction Geometry, and Liquid-Vapor Interface Velocity.
    Kriegel AT; Ducker WA
    Langmuir; 2019 Oct; 35(39):12817-12830. PubMed ID: 31448615
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbonated water droplets on a dusty hydrophobic surface.
    Abubakar AA; Yilbas BS; Al-Qahtani H; Hassan G; Yakubu M; Hatab SB
    Soft Matter; 2020 Aug; 16(30):7144-7155. PubMed ID: 32666999
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Droplet impact: Viscosity and wettability effects on splashing.
    Almohammadi H; Amirfazli A
    J Colloid Interface Sci; 2019 Oct; 553():22-30. PubMed ID: 31176976
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Water Penetration through a Superhydrophobic Mesh During a Drop Impact.
    Ryu S; Sen P; Nam Y; Lee C
    Phys Rev Lett; 2017 Jan; 118(1):014501. PubMed ID: 28106449
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Splashing Threshold of Oblique Droplet Impacts on Surfaces of Various Wettability.
    Aboud DG; Kietzig AM
    Langmuir; 2015 Sep; 31(36):10100-11. PubMed ID: 26318736
    [TBL] [Abstract][Full Text] [Related]  

  • 26. How microstructures affect air film dynamics prior to drop impact.
    van der Veen RC; Hendrix MH; Tran T; Sun C; Tsai PA; Lohse D
    Soft Matter; 2014 Jun; 10(21):3703-7. PubMed ID: 24740526
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular dynamics simulation of shock-induced microscopic bubble collapse.
    Zhan S; Duan H; Pan L; Tu J; Jia D; Yang T; Li J
    Phys Chem Chem Phys; 2021 Apr; 23(14):8446-8455. PubMed ID: 33876008
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-speed jetting and spray formation from bubble collapse.
    Karri B; Avila SR; Loke YC; O'Shea SJ; Klaseboer E; Khoo BC; Ohl CD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):015303. PubMed ID: 22400617
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Energy Loss for Droplets Bouncing Off Superhydrophobic Surfaces.
    Thenarianto C; Koh XQ; Lin M; Jokinen V; Daniel D
    Langmuir; 2023 Feb; 39(8):3162-3167. PubMed ID: 36795493
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Jets and sprays arising from a spark-induced oscillating bubble near a plate with a hole.
    Karri B; Ohl SW; Klaseboer E; Ohl CD; Khoo BC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036309. PubMed ID: 23031015
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Air entrapment and bubble formation during droplet impact onto a single cubic pillar.
    Ren W; Foltyn P; Geppert A; Weigand B
    Sci Rep; 2021 Sep; 11(1):18018. PubMed ID: 34504203
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanisms of single bubble cleaning.
    Reuter F; Mettin R
    Ultrason Sonochem; 2016 Mar; 29():550-62. PubMed ID: 26187759
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Numerical study on the desorption processes of oil droplets inside oil-contaminated sand under cavitation micro-jets.
    Zhao F; Yan Q; Cheng D
    Ultrason Sonochem; 2021 Oct; 78():105745. PubMed ID: 34520961
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct measurements of air layer profiles under impacting droplets using high-speed color interferometry.
    van der Veen RC; Tran T; Lohse D; Sun C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026315. PubMed ID: 22463325
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Droplet Impact Dynamics on Lubricant-Infused Superhydrophobic Surfaces: The Role of Viscosity Ratio.
    Kim JH; Rothstein JP
    Langmuir; 2016 Oct; 32(40):10166-10176. PubMed ID: 27622306
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Air at hydrophobic surfaces and kinetics of three phase contact formation.
    Krasowska M; Zawala J; Malysa K
    Adv Colloid Interface Sci; 2009; 147-148():155-69. PubMed ID: 19036351
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular Dynamics Study on the Combined Effects of the Nanostructure and Wettability of Solid Surfaces on Bubble Nucleation.
    Zhou W; Zhang Y; Wei J
    Langmuir; 2022 Jan; 38(3):1223-1230. PubMed ID: 34995464
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of a rupturing encapsulated bubble in inducing the detachment of a drop.
    Ling WY; Neild A; Ng TW
    Langmuir; 2012 Dec; 28(51):17656-65. PubMed ID: 23181627
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.