BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 2866184)

  • 1. Nonenzymatic cleavage of proteins by reactive oxygen species generated by dithiothreitol and iron.
    Kim K; Rhee SG; Stadtman ER
    J Biol Chem; 1985 Dec; 260(29):15394-7. PubMed ID: 2866184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The sites of cleavage on Escherichia coli glutamine synthetase by dithiothreitol, Fe(III) and O2.
    Jhon DY; Kim K; Byun SM
    Biofactors; 1991 Jun; 3(2):121-5. PubMed ID: 1680338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The iron-catalyzed oxidation of dithiothreitol is a biphasic process: hydrogen peroxide is involved in the initiation of a free radical chain of reactions.
    Netto LE; Stadtman ER
    Arch Biochem Biophys; 1996 Sep; 333(1):233-42. PubMed ID: 8806776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of metal-catalyzed oxidation systems by a yeast protector protein in the presence of thiol.
    Kwon SJ; Park JW; Kim K
    Biochem Mol Biol Int; 1994 Mar; 32(3):419-27. PubMed ID: 7913363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of mixed-function oxidation of enzymes on their susceptibility to degradation by a nonlysosomal cysteine proteinase.
    Rivett AJ
    Arch Biochem Biophys; 1985 Dec; 243(2):624-32. PubMed ID: 2867745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of the hydrophobicity of glutamine synthetase by mixed-function oxidation.
    Cervera J; Levine RL
    FASEB J; 1988 Jul; 2(10):2591-5. PubMed ID: 2898411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The isolation and purification of a specific "protector" protein which inhibits enzyme inactivation by a thiol/Fe(III)/O2 mixed-function oxidation system.
    Kim K; Kim IH; Lee KY; Rhee SG; Stadtman ER
    J Biol Chem; 1988 Apr; 263(10):4704-11. PubMed ID: 2895105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-catalyzed oxidation of Escherichia coli glutamine synthetase: correlation of structural and functional changes.
    Rivett AJ; Levine RL
    Arch Biochem Biophys; 1990 Apr; 278(1):26-34. PubMed ID: 1969723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inactivation of glutamine synthetase by a purified rabbit liver microsomal cytochrome P-450 system.
    Nakamura K; Oliver C; Stadtman ER
    Arch Biochem Biophys; 1985 Jul; 240(1):319-29. PubMed ID: 2861789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tryptophan hydroxylase. The role of oxygen, iron, and sulfhydryl groups as determinants of stability and catalytic activity.
    Kuhn DM; Ruskin B; Lovenberg W
    J Biol Chem; 1980 May; 255(9):4137-43. PubMed ID: 7372670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative modification of Escherichia coli glutamine synthetase. Decreases in the thermodynamic stability of protein structure and specific changes in the active site conformation.
    Fisher MT; Stadtman ER
    J Biol Chem; 1992 Jan; 267(3):1872-80. PubMed ID: 1346137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of hydrogen peroxide by thiol-specific antioxidant enzyme (TSA) is involved with its antioxidant properties. TSA possesses thiol peroxidase activity.
    LES Netto ; Chae HZ; Kang SW; Rhee SG; Stadtman ER
    J Biol Chem; 1996 Jun; 271(26):15315-21. PubMed ID: 8663080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence of a peptide susceptible to mixed-function oxidation. Probable cation binding site in glutamine synthetase.
    Farber JM; Levine RL
    J Biol Chem; 1986 Apr; 261(10):4574-8. PubMed ID: 2870062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Free oxygen radiacals and kidney diseases--part I].
    Sakac V; Sakac M
    Med Pregl; 2000; 53(9-10):463-74. PubMed ID: 11320727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteolysis induced by metal-catalyzed oxidation.
    Levine RL
    Revis Biol Celular; 1989; 21():347-60. PubMed ID: 2576881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical and physiological aspects of glutamine synthetase inactivation in Saccharomyces cerevisiae.
    Mitchell AP; Magasanik B
    J Biol Chem; 1984 Oct; 259(19):12054-62. PubMed ID: 6148344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Covalent modification of proteins by mixed-function oxidation: recognition by intracellular proteases.
    Rivett AJ; Roseman JE; Oliver CN; Levine RL; Stadtman ER
    Prog Clin Biol Res; 1985; 180():317-28. PubMed ID: 2863828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative modification of glutamine synthetase. II. Characterization of the ascorbate model system.
    Levine RL
    J Biol Chem; 1983 Oct; 258(19):11828-33. PubMed ID: 6137484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation of Bacillus subtilis glutamine synthetase by metal-catalyzed oxidation.
    Kimura K; Sugano S
    J Biochem; 1992 Dec; 112(6):828-33. PubMed ID: 1363551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rethinking Dithiothreitol-Based Particulate Matter Oxidative Potential: Measuring Dithiothreitol Consumption versus Reactive Oxygen Species Generation.
    Xiong Q; Yu H; Wang R; Wei J; Verma V
    Environ Sci Technol; 2017 Jun; 51(11):6507-6514. PubMed ID: 28489384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.