These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 28662047)

  • 1. MDD-Palm: Identification of protein S-palmitoylation sites with substrate motifs based on maximal dependence decomposition.
    Weng SL; Kao HJ; Huang CH; Lee TY
    PLoS One; 2017; 12(6):e0179529. PubMed ID: 28662047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and identification of lysine glutarylation based on intrinsic interdependence between positions in the substrate sites.
    Huang KY; Kao HJ; Hsu JB; Weng SL; Lee TY
    BMC Bioinformatics; 2019 Feb; 19(Suppl 13):384. PubMed ID: 30717647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UbiSite: incorporating two-layered machine learning method with substrate motifs to predict ubiquitin-conjugation site on lysines.
    Huang CH; Su MG; Kao HJ; Jhong JH; Weng SL; Lee TY
    BMC Syst Biol; 2016 Jan; 10 Suppl 1(Suppl 1):6. PubMed ID: 26818456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MDD-SOH: exploiting maximal dependence decomposition to identify S-sulfenylation sites with substrate motifs.
    Bui VM; Lu CT; Ho TT; Lee TY
    Bioinformatics; 2016 Jan; 32(2):165-72. PubMed ID: 26411868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MDD-carb: a combinatorial model for the identification of protein carbonylation sites with substrate motifs.
    Kao HJ; Weng SL; Huang KY; Kaunang FJ; Hsu JB; Huang CH; Lee TY
    BMC Syst Biol; 2017 Dec; 11(Suppl 7):137. PubMed ID: 29322938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SOHSite: incorporating evolutionary information and physicochemical properties to identify protein S-sulfenylation sites.
    Bui VM; Weng SL; Lu CT; Chang TH; Weng JT; Lee TY
    BMC Genomics; 2016 Jan; 17 Suppl 1(Suppl 1):9. PubMed ID: 26819243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A two-layered machine learning method to identify protein O-GlcNAcylation sites with O-GlcNAc transferase substrate motifs.
    Kao HJ; Huang CH; Bretaña NA; Lu CT; Huang KY; Weng SL; Lee TY
    BMC Bioinformatics; 2015; 16 Suppl 18(Suppl 18):S10. PubMed ID: 26680539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SNOSite: exploiting maximal dependence decomposition to identify cysteine S-nitrosylation with substrate site specificity.
    Lee TY; Chen YJ; Lu TC; Huang HD; Chen YJ
    PLoS One; 2011; 6(7):e21849. PubMed ID: 21789187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation and identification of protein carbonylation sites based on position-specific amino acid composition and physicochemical features.
    Weng SL; Huang KY; Kaunang FJ; Huang CH; Kao HJ; Chang TH; Wang HY; Lu JJ; Lee TY
    BMC Bioinformatics; 2017 Mar; 18(Suppl 3):66. PubMed ID: 28361707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GSHSite: exploiting an iteratively statistical method to identify s-glutathionylation sites with substrate specificity.
    Chen YJ; Lu CT; Huang KY; Wu HY; Chen YJ; Lee TY
    PLoS One; 2015; 10(4):e0118752. PubMed ID: 25849935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization and Identification of Lysine Succinylation Sites based on Deep Learning Method.
    Huang KY; Hsu JB; Lee TY
    Sci Rep; 2019 Nov; 9(1):16175. PubMed ID: 31700141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iDPGK: characterization and identification of lysine phosphoglycerylation sites based on sequence-based features.
    Huang KY; Hung FY; Kao HJ; Lau HH; Weng SL
    BMC Bioinformatics; 2020 Dec; 21(1):568. PubMed ID: 33297954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SuccSite: Incorporating Amino Acid Composition and Informative k-spaced Amino Acid Pairs to Identify Protein Succinylation Sites.
    Kao HJ; Nguyen VN; Huang KY; Chang WC; Lee TY
    Genomics Proteomics Bioinformatics; 2020 Apr; 18(2):208-219. PubMed ID: 32592791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A machine-learning approach for predicting palmitoylation sites from integrated sequence-based features.
    Li L; Luo Q; Xiao W; Li J; Zhou S; Li Y; Zheng X; Yang H
    J Bioinform Comput Biol; 2017 Feb; 15(1):1650025. PubMed ID: 27411307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PlantPhos: using maximal dependence decomposition to identify plant phosphorylation sites with substrate site specificity.
    Lee TY; Bretaña NA; Lu CT
    BMC Bioinformatics; 2011 Jun; 12():261. PubMed ID: 21703007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SPalmitoylC-PseAAC: A sequence-based model developed via Chou's 5-steps rule and general PseAAC for identifying S-palmitoylation sites in proteins.
    Hussain W; Khan YD; Rasool N; Khan SA; Chou KC
    Anal Biochem; 2019 Mar; 568():14-23. PubMed ID: 30593778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The prediction of palmitoylation site locations using a multiple feature extraction method.
    Shi SP; Sun XY; Qiu JD; Suo SB; Chen X; Huang SY; Liang RP
    J Mol Graph Model; 2013 Mar; 40():125-30. PubMed ID: 23419766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved prediction of palmitoylation sites using PWMs and SVM.
    Li YX; Shao YH; Deng NY
    Protein Pept Lett; 2011 Feb; 18(2):186-93. PubMed ID: 21054270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A New Scheme to Characterize and Identify Protein Ubiquitination Sites.
    Nguyen VN; Huang KY; Huang CH; Lai KR; Lee TY
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(2):393-403. PubMed ID: 26887002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PalmPred: an SVM based palmitoylation prediction method using sequence profile information.
    Kumari B; Kumar R; Kumar M
    PLoS One; 2014; 9(2):e89246. PubMed ID: 24586628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.