These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 28662086)
1. Abscisic acid pathway involved in the regulation of watermelon fruit ripening and quality trait evolution. Wang Y; Guo S; Tian S; Zhang J; Ren Y; Sun H; Gong G; Zhang H; Xu Y PLoS One; 2017; 12(6):e0179944. PubMed ID: 28662086 [TBL] [Abstract][Full Text] [Related]
2. Comparative Transcriptome Analysis of Cultivated and Wild Watermelon during Fruit Development. Guo S; Sun H; Zhang H; Liu J; Ren Y; Gong G; Jiao C; Zheng Y; Yang W; Fei Z; Xu Y PLoS One; 2015; 10(6):e0130267. PubMed ID: 26079257 [TBL] [Abstract][Full Text] [Related]
4. ClSnRK2.3 negatively regulates watermelon fruit ripening and sugar accumulation. Wang J; Wang Y; Yu Y; Zhang J; Ren Y; Tian S; Li M; Liao S; Guo S; Gong G; Zhang H; Xu Y J Integr Plant Biol; 2023 Oct; 65(10):2336-2348. PubMed ID: 37219233 [TBL] [Abstract][Full Text] [Related]
5. Expression analysis of β-glucosidase genes that regulate abscisic acid homeostasis during watermelon (Citrullus lanatus) development and under stress conditions. Li Q; Li P; Sun L; Wang Y; Ji K; Sun Y; Dai S; Chen P; Duan C; Leng P J Plant Physiol; 2012 Jan; 169(1):78-85. PubMed ID: 21940067 [TBL] [Abstract][Full Text] [Related]
6. High-level expression of a novel chromoplast phosphate transporter ClPHT4;2 is required for flesh color development in watermelon. Zhang J; Guo S; Ren Y; Zhang H; Gong G; Zhou M; Wang G; Zong M; He H; Liu F; Xu Y New Phytol; 2017 Feb; 213(3):1208-1221. PubMed ID: 27787901 [TBL] [Abstract][Full Text] [Related]
7. Comparative transcriptome analysis of two contrasting watermelon genotypes during fruit development and ripening. Zhu Q; Gao P; Liu S; Zhu Z; Amanullah S; Davis AR; Luan F BMC Genomics; 2017 Jan; 18(1):3. PubMed ID: 28049426 [TBL] [Abstract][Full Text] [Related]
8. Chemical inhibitors of viviparous germination in the fruit of watermelon. Kobayashi Y; Nabeta K; Matsuura H Plant Cell Physiol; 2010 Sep; 51(9):1594-8. PubMed ID: 20630986 [TBL] [Abstract][Full Text] [Related]
9. Origin and emergence of the sweet dessert watermelon, Citrullus lanatus. Paris HS Ann Bot; 2015 Aug; 116(2):133-48. PubMed ID: 26141130 [TBL] [Abstract][Full Text] [Related]
10. Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits. Guo S; Zhao S; Sun H; Wang X; Wu S; Lin T; Ren Y; Gao L; Deng Y; Zhang J; Lu X; Zhang H; Shang J; Gong G; Wen C; He N; Tian S; Li M; Liu J; Wang Y; Zhu Y; Jarret R; Levi A; Zhang X; Huang S; Fei Z; Liu W; Xu Y Nat Genet; 2019 Nov; 51(11):1616-1623. PubMed ID: 31676863 [TBL] [Abstract][Full Text] [Related]
11. Genome of 'Charleston Gray', the principal American watermelon cultivar, and genetic characterization of 1,365 accessions in the U.S. National Plant Germplasm System watermelon collection. Wu S; Wang X; Reddy U; Sun H; Bao K; Gao L; Mao L; Patel T; Ortiz C; Abburi VL; Nimmakayala P; Branham S; Wechter P; Massey L; Ling KS; Kousik C; Hammar SA; Tadmor Y; Portnoy V; Gur A; Katzir N; Guner N; Davis A; Hernandez AG; Wright CL; McGregor C; Jarret R; Zhang X; Xu Y; Wehner TC; Grumet R; Levi A; Fei Z Plant Biotechnol J; 2019 Dec; 17(12):2246-2258. PubMed ID: 31022325 [TBL] [Abstract][Full Text] [Related]
12. Characterization of transcriptome dynamics during watermelon fruit development: sequencing, assembly, annotation and gene expression profiles. Guo S; Liu J; Zheng Y; Huang M; Zhang H; Gong G; He H; Ren Y; Zhong S; Fei Z; Xu Y BMC Genomics; 2011 Sep; 12():454. PubMed ID: 21936920 [TBL] [Abstract][Full Text] [Related]
13. Systematized biosynthesis and catabolism regulate citrulline accumulation in watermelon. Joshi V; Joshi M; Silwal D; Noonan K; Rodriguez S; Penalosa A Phytochemistry; 2019 Jun; 162():129-140. PubMed ID: 30884257 [TBL] [Abstract][Full Text] [Related]
14. Promoter variations of ClERF1 gene determines flesh firmness in watermelon. Zhou Y; Shen Q; Cai L; Zhao H; Zhang K; Ma Y; Bo Y; Lyu X; Yang J; Hu Z; Zhang M BMC Plant Biol; 2024 Apr; 24(1):290. PubMed ID: 38627629 [TBL] [Abstract][Full Text] [Related]
15. Cloning and functional analysis of 9-cis-epoxycarotenoid dioxygenase (NCED) genes encoding a key enzyme during abscisic acid biosynthesis from peach and grape fruits. Zhang M; Leng P; Zhang G; Li X J Plant Physiol; 2009 Aug; 166(12):1241-1252. PubMed ID: 19307046 [TBL] [Abstract][Full Text] [Related]
16. Genetic Analysis of Fruit Quality Traits in Sweet Watermelon ( Mashilo J; Shimelis H; Ngwepe RM; Thungo Z Front Plant Sci; 2022; 13():834696. PubMed ID: 35392511 [TBL] [Abstract][Full Text] [Related]
17. A Genome-Wide Analysis of the Subburaj S; Tu L; Lee K; Park GS; Lee H; Chun JP; Lim YP; Park MW; McGregor C; Lee GJ Genes (Basel); 2020 Sep; 11(10):. PubMed ID: 32987959 [TBL] [Abstract][Full Text] [Related]
18. Transcriptome regulation of carotenoids in five flesh-colored watermelons (Citrullus lanatus). Yuan P; Umer MJ; He N; Zhao S; Lu X; Zhu H; Gong C; Diao W; Gebremeskel H; Kuang H; Liu W BMC Plant Biol; 2021 Apr; 21(1):203. PubMed ID: 33910512 [TBL] [Abstract][Full Text] [Related]
19. PacCYP707A2 negatively regulates cherry fruit ripening while PacCYP707A1 mediates drought tolerance. Li Q; Chen P; Dai S; Sun Y; Yuan B; Kai W; Pei Y; He S; Liang B; Zhang Y; Leng P J Exp Bot; 2015 Jul; 66(13):3765-74. PubMed ID: 25956880 [TBL] [Abstract][Full Text] [Related]
20. Linkage Mapping and Comparative Transcriptome Analysis of Firmness in Watermelon ( Sun L; Zhang Y; Cui H; Zhang L; Sha T; Wang C; Fan C; Luan F; Wang X Front Plant Sci; 2020; 11():831. PubMed ID: 32612625 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]