These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 28662243)

  • 1. Hyperspectral imaging acousto-optic system with spatial filtering for optical phase visualization.
    Yushkov KB; Molchanov VY
    J Biomed Opt; 2017 Jun; 22(6):66017. PubMed ID: 28662243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiometric calibration and noise estimation of acousto-optic tunable filter hyperspectral imaging systems.
    Katrašnik J; Pernuš F; Likar B
    Appl Opt; 2013 May; 52(15):3526-37. PubMed ID: 23736239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contrast enhancement in microscopy of human thyroid tumors by means of acousto-optic adaptive spatial filtering.
    Yushkov KB; Molchanov VY; Belousov PV; Abrosimov AY
    J Biomed Opt; 2016 Jan; 21(1):16003. PubMed ID: 26757025
    [No Abstract]   [Full Text] [Related]  

  • 4. A hyperspectral imaging system for in vivo optical diagnostics. Hyperspectral imaging basic principles, instrumental systems, and applications of biomedical interest.
    Vo-Dinh T; Stokes DL; Wabuyele MB; Martin ME; Song JM; Jagannathan R; Michaud E; Lee RJ; Pan X
    IEEE Eng Med Biol Mag; 2004; 23(5):40-9. PubMed ID: 15565798
    [No Abstract]   [Full Text] [Related]  

  • 5. Acousto-optical tunable filter for combined wideband, spectral, and optical coherence microscopy.
    Machikhin AS; Pozhar VE; Viskovatykh AV; Burmak LI
    Appl Opt; 2015 Sep; 54(25):7508-13. PubMed ID: 26368870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarizer-Free AOTF-Based SWIR Hyperspectral Imaging for Biomedical Applications.
    Batshev V; Machikhin A; Martynov G; Pozhar V; Boritko S; Sharikova M; Lomonov V; Vinogradov A
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32784512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acousto-optic-tunable-filter-based spectropolarimetric imagers for medical diagnostic applications--instrument design point of view.
    Gupta N
    J Biomed Opt; 2005; 10(5):051802. PubMed ID: 16292960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AOTF-based hyperspectral imaging phase microscopy.
    Yushkov KB; Champagne J; Kastelik JC; Makarov OY; Molchanov VY
    Biomed Opt Express; 2020 Dec; 11(12):7053-7061. PubMed ID: 33408979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thin-film tunable filters for hyperspectral fluorescence microscopy.
    Favreau P; Hernandez C; Lindsey AS; Alvarez DF; Rich T; Prabhat P; Leavesley SJ
    J Biomed Opt; 2014 Jan; 19(1):011017. PubMed ID: 24077519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multispectral integral imaging acquisition and processing using a monochrome camera and a liquid crystal tunable filter.
    Latorre-Carmona P; Sánchez-Ortiga E; Xiao X; Pla F; Martínez-Corral M; Navarro H; Saavedra G; Javidi B
    Opt Express; 2012 Nov; 20(23):25960-9. PubMed ID: 23187411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acousto-optic image processing.
    Balakshy VI; Kostyuk DE
    Appl Opt; 2009 Mar; 48(7):C24-32. PubMed ID: 19252612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring tissue properties and monitoring therapeutic responses using acousto-optic imaging.
    Murray TW; Lai P; Roy RA
    Ann Biomed Eng; 2012 Feb; 40(2):474-85. PubMed ID: 22006427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Our solution for fusion of simultaneusly acquired whole body scintigrams and optical images, as usesful tool in clinical practice in patients with differentiated thyroid carcinomas after radioiodine therapy. A useful tool in clinical practice.
    Matovic M; Jankovic M; Barjaktarovic M; Jeremic M
    Hell J Nucl Med; 2017; 20 Suppl():159. PubMed ID: 29324929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histological skin morphology enhancement base on molecular hyperspectral imaging technology.
    Li Q; Sun Z; Wang Y; Liu H; Guo F; Zhu J
    Skin Res Technol; 2014 Aug; 20(3):332-40. PubMed ID: 24267453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical imaging: skin cancer imaging.
    Mullani NA; O'Neil RG
    J Nucl Med; 2008 Jun; 49(6):1031. PubMed ID: 18483089
    [No Abstract]   [Full Text] [Related]  

  • 16. Acousto-optic tunable filter sidelobe analysis and reduction with telecentric confocal optics.
    Suhre DR; Gupta N
    Appl Opt; 2005 Sep; 44(27):5797-801. PubMed ID: 16201445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient double-filtering with a single acousto-optic tunable filter.
    You JW; Ahn J; Kim S; Kim D
    Opt Express; 2008 Dec; 16(26):21505-11. PubMed ID: 19104580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probabilistic atlas can improve reconstruction from optical imaging of the neonatal brain.
    Heiskala J; Pollari M; Metsäranta M; Grant PE; Nissilä I
    Opt Express; 2009 Aug; 17(17):14977-92. PubMed ID: 19687976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable thin-film optical filters for hyperspectral microscopy.
    Favreau PF; Rich TC; Prabhat P; Leavesley SJ
    Proc SPIE Int Soc Opt Eng; 2013 Feb; 8589():. PubMed ID: 34045788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of skin optical parameters for real-time hyperspectral imaging applications.
    Bjorgan A; Milanic M; Randeberg LL
    J Biomed Opt; 2014 Jun; 19(6):066003. PubMed ID: 24898603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.