BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

772 related articles for article (PubMed ID: 28662245)

  • 1. Reduction of Rod and Cone Function in 6.5-Year-Old Children Born Extremely Preterm.
    Molnar AEC; Andréasson SO; Larsson EKB; Åkerblom HM; Holmström GE
    JAMA Ophthalmol; 2017 Aug; 135(8):854-861. PubMed ID: 28662245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flicker electroretinogram recorded with portable ERG device in prematurely born schoolchildren with and without ROP.
    Tekavčič Pompe M; Šuštar M
    Doc Ophthalmol; 2019 Aug; 139(1):59-65. PubMed ID: 30972611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Full-field electroretinogram in autism spectrum disorder.
    Constable PA; Gaigg SB; Bowler DM; Jägle H; Thompson DA
    Doc Ophthalmol; 2016 Apr; 132(2):83-99. PubMed ID: 26868825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiation of murine models of "negative ERG" by single and repetitive light stimuli.
    Tanimoto N; Akula JD; Fulton AB; Weber BH; Seeliger MW
    Doc Ophthalmol; 2016 Apr; 132(2):101-9. PubMed ID: 26996188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ISCEV extended protocol for the dark-adapted red flash ERG.
    Thompson DA; Fujinami K; Perlman I; Hamilton R; Robson AG
    Doc Ophthalmol; 2018 Jun; 136(3):191-197. PubMed ID: 29934801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cone electroretinogram in retinopathy of prematurity.
    Fulton AB; Hansen RM; Moskowitz A
    Invest Ophthalmol Vis Sci; 2008 Feb; 49(2):814-9. PubMed ID: 18235032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of "non-recordable" electroretinograms by 9 Hz flicker stimulation under scotopic conditions.
    Schatz A; Wilke R; Strasser T; Gekeler F; Messias A; Zrenner E
    Doc Ophthalmol; 2012 Feb; 124(1):27-39. PubMed ID: 22179598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abnormal 8-Hz flicker electroretinograms in carriers of X-linked retinoschisis.
    McAnany JJ; Park JC; Collison FT; Fishman GA; Stone EM
    Doc Ophthalmol; 2016 Aug; 133(1):61-70. PubMed ID: 27369766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of three techniques to estimate the human dark-adapted cone electroretinogram.
    Verdon WA; Schneck ME; Haegerstrom-Portnoy G
    Vision Res; 2003 Sep; 43(19):2089-99. PubMed ID: 12842161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing nonsedated handheld cone flicker electroretingram as a screening test in pediatric patients: comparison to sedated conventional cone flicker electroretinogram.
    Osigian CJ; Grace SF; Cavuoto KM; Feuer WJ; Tavakoli M; Saksiriwutto P; Liu M; Capo H; Lam BL
    J AAPOS; 2019 Feb; 23(1):34.e1-34.e5. PubMed ID: 30625363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cone function in children with a history of preterm birth.
    Ecsedy M; Varsányi B; Szigeti A; Szrnka G; Németh J; Récsán Z
    Doc Ophthalmol; 2011 Jun; 122(3):141-8. PubMed ID: 21455768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of electroretinogram between healthy preterm and term infants.
    Zhou X; Huang X; Chen H; Zhao P
    Doc Ophthalmol; 2010 Dec; 121(3):205-13. PubMed ID: 20878205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of retinal structure and function in cone dystrophy with supernormal rod response.
    Abdelkader E; Yasir ZH; Khan AM; Raddadi O; Khandekar R; Alateeq N; Nowilaty S; AlShahrani N; Schatz P
    Doc Ophthalmol; 2020 Aug; 141(1):23-32. PubMed ID: 31960170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An extended 15 Hz ERG protocol (1): the contributions of primary and secondary rod pathways and the cone pathway.
    Bijveld MM; Kappers AM; Riemslag FC; Hoeben FP; Vrijling AC; van Genderen MM
    Doc Ophthalmol; 2011 Dec; 123(3):149-59. PubMed ID: 21947561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cone-rod dysfunction is a sign of early-onset high myopia.
    Wang P; Xiao X; Huang L; Guo X; Zhang Q
    Optom Vis Sci; 2013 Nov; 90(11):1327-30. PubMed ID: 24100477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using Silent Substitution to Track the Mesopic Transition From Rod- to Cone-Based Vision in Mice.
    Allen AE; Lucas RJ
    Invest Ophthalmol Vis Sci; 2016 Jan; 57(1):276-87. PubMed ID: 26818794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The rod photoreceptors in retinopathy of prematurity: an electroretinographic study.
    Fulton AB; Hansen RM; Petersen RA; Vanderveen DK
    Arch Ophthalmol; 2001 Apr; 119(4):499-505. PubMed ID: 11296015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rod and rod-driven function in achromatopsia and blue cone monochromatism.
    Moskowitz A; Hansen RM; Akula JD; Eklund SE; Fulton AB
    Invest Ophthalmol Vis Sci; 2009 Feb; 50(2):950-8. PubMed ID: 18824728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The contribution of cone responses to rat electroretinograms.
    Nixon PJ; Bui BV; Armitage JA; Vingrys AJ
    Clin Exp Ophthalmol; 2001 Jun; 29(3):193-6. PubMed ID: 11446467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors that influence the increase in the electroretinogram 30-Hz flicker amplitude during light adaptation.
    Raether K; Zrenner E
    Ger J Ophthalmol; 1996 Sep; 5(5):285-8. PubMed ID: 8911951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.