These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 28662286)

  • 21. Influence of hydrazine-induced aggregation on the electrochemical detection of platinum nanoparticles.
    Kleijn SE; Serrano-Bou B; Yanson AI; Koper MT
    Langmuir; 2013 Feb; 29(6):2054-64. PubMed ID: 23320415
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrochemical monitoring of single nanoparticle collisions at mercury-modified platinum ultramicroelectrodes.
    Dasari R; Tai K; Robinson DA; Stevenson KJ
    ACS Nano; 2014 May; 8(5):4539-46. PubMed ID: 24708257
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stochastic electrochemistry with electrocatalytic nanoparticles at inert ultramicroelectrodes--theory and experiments.
    Kwon SJ; Zhou H; Fan FR; Vorobyev V; Zhang B; Bard AJ
    Phys Chem Chem Phys; 2011 Mar; 13(12):5394-402. PubMed ID: 21359384
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Current transients in single nanoparticle collision events.
    Xiao X; Fan FR; Zhou J; Bard AJ
    J Am Chem Soc; 2008 Dec; 130(49):16669-77. PubMed ID: 19554731
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single-Nanoparticle Electrochemistry through Immobilization and Collision.
    Anderson TJ; Zhang B
    Acc Chem Res; 2016 Nov; 49(11):2625-2631. PubMed ID: 27730817
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Addressing Colloidal Stability for Unambiguous Electroanalysis of Single Nanoparticle Impacts.
    Robinson DA; Kondajji AM; Castañeda AD; Dasari R; Crooks RM; Stevenson KJ
    J Phys Chem Lett; 2016 Jul; 7(13):2512-7. PubMed ID: 27306603
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Artificial Intelligence-Assisted Multiparameter Size Discrimination of Silver Nanoparticles through Electrochemical Collision.
    Xu Y; Jiang WJ; Bai YY; Yang YJ; Zhang ZL
    Anal Chem; 2024 Apr; 96(16):6195-6201. PubMed ID: 38607805
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrochemical Detection of Single Phospholipid Vesicle Collisions at a Pt Ultramicroelectrode.
    Lebègue E; Anderson CM; Dick JE; Webb LJ; Bard AJ
    Langmuir; 2015 Oct; 31(42):11734-9. PubMed ID: 26474107
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Light-Controlled Nanoparticle Collision Experiments.
    Wang Q; Bae JH; Nepomnyashchii AB; Jia R; Zhang S; Mirkin MV
    J Phys Chem Lett; 2020 Apr; 11(8):2972-2976. PubMed ID: 32216279
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrocatalytic Reduction of Benzyl Bromide during Single Ag Nanoparticle Collisions.
    Vitti NJ; White HS
    Langmuir; 2024 Feb; 40(6):3053-3062. PubMed ID: 38289282
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Collision, Adhesion, and Oxidation of Single Ag Nanoparticles on a Polysulfide-Modified Microelectrode.
    Defnet PA; Zhang B
    J Am Chem Soc; 2021 Oct; 143(39):16154-16162. PubMed ID: 34549950
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single Palladium Nanoparticle Collisions Detection through Chronopotentiometric Method: Introducing a New Approach to Improve the Analytical Signals.
    Daryanavard N; Zare HR
    Anal Chem; 2017 Sep; 89(17):8901-8907. PubMed ID: 28745042
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detection of single metal nanoparticle collision events in non-aqueous media.
    Meekins BH
    Phys Chem Chem Phys; 2017 Jul; 19(26):17256-17262. PubMed ID: 28639677
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temporally-Resolved Ultrafast Hydrogen Adsorption and Evolution on Single Platinum Nanoparticles.
    Defnet PA; Han C; Zhang B
    Anal Chem; 2019 Mar; 91(6):4023-4030. PubMed ID: 30785269
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrocatalytic Amplification of Single Nanoparticle Collisions Using DNA-Modified Surfaces.
    Alligrant TM; Dasari R; Stevenson KJ; Crooks RM
    Langmuir; 2015 Oct; 31(42):11724-33. PubMed ID: 26457645
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrocatalytic Efficiency Analysis of Catechol Molecules for NADH Oxidation during Nanoparticle Collision.
    Zhao LJ; Qian RC; Ma W; Tian H; Long YT
    Anal Chem; 2016 Sep; 88(17):8375-9. PubMed ID: 27491398
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Observation of single metal nanoparticle collisions by open circuit (mixed) potential changes at an ultramicroelectrode.
    Zhou H; Park JH; Fan FR; Bard AJ
    J Am Chem Soc; 2012 Aug; 134(32):13212-5. PubMed ID: 22839524
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication of Glass-Insulated Ultramicrometer to Submicrometer Carbon Fiber Electrodes to Support a Single Nanoparticle and Nanoparticle Ensembles in Electrocatalytic Investigations.
    Ortiz-Ledón CA; Zoski CG
    Anal Chem; 2018 Nov; 90(21):12616-12624. PubMed ID: 30299083
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Time-Resolved Electrochemical Impedance Spectroscopy of Stochastic Nanoparticle Collision: Short Time Fourier Transform versus Continuous Wavelet Transform.
    Ha LD; Kim KJ; Kwon SJ; Chang BY; Hwang S
    Small; 2023 Aug; 19(33):e2302158. PubMed ID: 37162441
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrochemistry at One Nanoparticle.
    Mirkin MV; Sun T; Yu Y; Zhou M
    Acc Chem Res; 2016 Oct; 49(10):2328-2335. PubMed ID: 27626289
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.