These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 28662429)

  • 1. The diatom-inferred pH reconstructions for a naturally neutralized pit lake in south-west Poland using the Mining and the Combined pH training sets.
    Sienkiewicz E; Gąsiorowski M
    Sci Total Environ; 2017 Dec; 605-606():75-87. PubMed ID: 28662429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The evolution of a mining lake - From acidity to natural neutralization.
    Sienkiewicz E; Gąsiorowski M
    Sci Total Environ; 2016 Jul; 557-558():343-54. PubMed ID: 27016682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Limited acid deposition inferred from diatoms during the 20th century - A case study from lakes in the Tatra Mountains.
    Sienkiewicz E; Gąsiorowski M
    J Environ Sci (China); 2018 Feb; 64():92-106. PubMed ID: 29478665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developing diatom-based inference models to assess lake ecosystem change along a gradient of metal smelting impacts: Sudbury lakes revisited.
    Cheng Y; Michelutti N; Paterson AM; Meyer-Jacob C; Smol JP
    J Phycol; 2022 Aug; 58(4):530-542. PubMed ID: 35578796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geochemical characterization of acid mine lakes in northwest Turkey and their effect on the environment.
    Yucel DS; Baba A
    Arch Environ Contam Toxicol; 2013 Apr; 64(3):357-76. PubMed ID: 23223936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 20th century acidification and warming as recorded in two alpine lakes in the Tatra Mountains (South Poland, Europe).
    Gasiorowski M; Sienkiewicz E
    Sci Total Environ; 2010 Feb; 408(5):1091-101. PubMed ID: 19896170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The most acidified Austrian lake in comparison to a neutralized mining lake.
    Moser M; Weisse T
    Limnologica; 2011 Dec; 41(4):303-315. PubMed ID: 22140284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laurentian Great Lakes phytoplankton and their water quality characteristics, including a diatom-based model for paleoreconstruction of phosphorus.
    Reavie ED; Heathcote AJ; Shaw Chraïbi VL
    PLoS One; 2014; 9(8):e104705. PubMed ID: 25105416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drivers of Change in a 7300-Year Holocene Diatom Record from the Hemi-Boreal Region of Ontario, Canada.
    Beck KK; Medeiros AS; Finkelstein SA
    PLoS One; 2016; 11(8):e0159937. PubMed ID: 27532216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional attributes of epilithic diatoms for palaeoenvironmental interpretations in South-West Greenland lakes.
    McGowan S; Gunn HV; Whiteford EJ; John Anderson N; Jones VJ; Law AC
    J Paleolimnol; 2018; 60(2):273-298. PubMed ID: 30996516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Littoral diatoms as indicators of recent water and sediment contamination by metals in lakes.
    Cattaneo A; Couillard Y; Wunsam S; Fortin C
    J Environ Monit; 2011 Mar; 13(3):572-82. PubMed ID: 21184001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental management of Aznalcóllar mine and its influence in the hydrogeochemical of the pit lake.
    Santofimia E; López-Pamo E; Montero E
    Water Environ Res; 2013 Aug; 85(8):706-14. PubMed ID: 24003596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Establishing ecological reference conditions and tracking post-application effectiveness of lanthanum-saturated bentonite clay (Phoslock®) for reducing phosphorus in aquatic systems: an applied paleolimnological approach.
    Moos MT; Taffs KH; Longstaff BJ; Ginn BK
    J Environ Manage; 2014 Aug; 141():77-85. PubMed ID: 24768837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative hydrochemical analysis of the formation of the mining lakes of As Pontes and Meirama (Spain).
    Juncosa R; Delgado J; Cereijo JL; García D; Muñoz A
    Environ Monit Assess; 2018 Aug; 190(9):526. PubMed ID: 30116906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review of acidity generation and consumption in acidic coal mine lakes and their watersheds.
    Blodau C
    Sci Total Environ; 2006 Oct; 369(1-3):307-32. PubMed ID: 16806405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sediment-based investigation of naturally or historically eutrophic lakes -- implications for lake management.
    Räsänen J; Kauppila T; Salonen VP
    J Environ Manage; 2006 May; 79(3):253-65. PubMed ID: 16256266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical composition of organic matter in extremely acid, lignite-containing lake sediments impacted by fly ash contamination.
    Chabbi A; Rumpel C
    J Environ Qual; 2004; 33(2):628-36. PubMed ID: 15074815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of Acid Mine Lakes Associated with Abandoned Coal Mines in Northwest Turkey.
    Sanliyuksel Yucel D; Balci N; Baba A
    Arch Environ Contam Toxicol; 2016 May; 70(4):757-82. PubMed ID: 26987541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstructing the ecological impacts of eight decades of mining, metallurgical, and municipal activities on a small boreal lake in northern Canada.
    Doig LE; Schiffer ST; Liber K
    Integr Environ Assess Manag; 2015 Jul; 11(3):490-501. PubMed ID: 25581271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diatom communities in the High Arctic aquatic habitats of northern Spitsbergen (Svalbard).
    Zgrundo A; Wojtasik B; Convey P; Majewska R
    Polar Biol; 2017; 40(4):873-890. PubMed ID: 32226209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.