These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 28662447)

  • 21. Structure-based discovery of NANOG variant with enhanced properties to promote self-renewal and reprogramming of pluripotent stem cells.
    Hayashi Y; Caboni L; Das D; Yumoto F; Clayton T; Deller MC; Nguyen P; Farr CL; Chiu HJ; Miller MD; Elsliger MA; Deacon AM; Godzik A; Lesley SA; Tomoda K; Conklin BR; Wilson IA; Yamanaka S; Fletterick RJ
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4666-71. PubMed ID: 25825768
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic restructuring and cell fate conversion.
    Prigione A; Ruiz-Pérez MV; Bukowiecki R; Adjaye J
    Cell Mol Life Sci; 2015 May; 72(9):1759-77. PubMed ID: 25586562
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acquisition of the pluripotent and trophectoderm states in the embryo and during somatic nuclear reprogramming.
    Jaber M; Sebban S; Buganim Y
    Curr Opin Genet Dev; 2017 Oct; 46():37-43. PubMed ID: 28662446
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Concise Review: Control of Cell Fate Through Cell Cycle and Pluripotency Networks.
    Boward B; Wu T; Dalton S
    Stem Cells; 2016 Jun; 34(6):1427-36. PubMed ID: 26889666
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Suppression of SIRT2 and altered acetylation status of human pluripotent stem cells: possible link to metabolic switch during reprogramming.
    Kwon OS; Han MJ; Cha HJ
    BMB Rep; 2017 Sep; 50(9):435-436. PubMed ID: 28683850
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of energy metabolism in human pluripotent stem cells.
    Liu W; Chen G
    Cell Mol Life Sci; 2021 Dec; 78(24):8097-8108. PubMed ID: 34773132
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Emerging roles of hypoxia-inducible factors and reactive oxygen species in cancer and pluripotent stem cells.
    Saito S; Lin YC; Tsai MH; Lin CS; Murayama Y; Sato R; Yokoyama KK
    Kaohsiung J Med Sci; 2015 Jun; 31(6):279-86. PubMed ID: 26043406
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Linking Telomere Regulation to Stem Cell Pluripotency.
    Liu L
    Trends Genet; 2017 Jan; 33(1):16-33. PubMed ID: 27889084
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MicroRNA-based system in stem cell reprogramming; differentiation/dedifferentiation.
    Pourrajab F; Babaei Zarch M; BaghiYazdi M; Hekmatimoghaddam S; Zare-Khormizi MR
    Int J Biochem Cell Biol; 2014 Oct; 55():318-28. PubMed ID: 25150833
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA Methylation is Correlated with Pluripotency of Stem Cells.
    Wang R; Li T
    Curr Stem Cell Res Ther; 2017; 12(6):442-446. PubMed ID: 28025937
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Revisiting Mitochondrial Function and Metabolism in Pluripotent Stem Cells: Where Do We Stand in Neurological Diseases?
    Lopes C; Rego AC
    Mol Neurobiol; 2017 Apr; 54(3):1858-1873. PubMed ID: 26892627
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Epigenetics of cell fate reprogramming and its implications for neurological disorders modelling.
    Grzybek M; Golonko A; Walczak M; Lisowski P
    Neurobiol Dis; 2017 Mar; 99():84-120. PubMed ID: 27890672
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Current status in cancer cell reprogramming and its clinical implications.
    Izgi K; Canatan H; Iskender B
    J Cancer Res Clin Oncol; 2017 Mar; 143(3):371-383. PubMed ID: 27620745
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Connecting Mitochondria, Metabolism, and Stem Cell Fate.
    Wanet A; Arnould T; Najimi M; Renard P
    Stem Cells Dev; 2015 Sep; 24(17):1957-71. PubMed ID: 26134242
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DPPA5 Supports Pluripotency and Reprogramming by Regulating NANOG Turnover.
    Qian X; Kim JK; Tong W; Villa-Diaz LG; Krebsbach PH
    Stem Cells; 2016 Mar; 34(3):588-600. PubMed ID: 26661329
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Super resolution imaging of chromatin in pluripotency, differentiation, and reprogramming.
    Ricci MA; Cosma MP; Lakadamyali M
    Curr Opin Genet Dev; 2017 Oct; 46():186-193. PubMed ID: 28843811
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Molecular mechanisms underlying differentiation of primordial germ cells and their reprogramming to pluripotential stem cells].
    Matsui Y
    Seikagaku; 2014 Dec; 86(6):726-34. PubMed ID: 25675810
    [No Abstract]   [Full Text] [Related]  

  • 38. Cell cycle and pluripotency: Convergence on octamer‑binding transcription factor 4 (Review).
    She S; Wei Q; Kang B; Wang YJ
    Mol Med Rep; 2017 Nov; 16(5):6459-6466. PubMed ID: 28901500
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mitofusins deficiency elicits mitochondrial metabolic reprogramming to pluripotency.
    Son MJ; Kwon Y; Son MY; Seol B; Choi HS; Ryu SW; Choi C; Cho YS
    Cell Death Differ; 2015 Dec; 22(12):1957-69. PubMed ID: 25882047
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reptin regulates pluripotency of embryonic stem cells and somatic cell reprogramming through Oct4-dependent mechanism.
    Do EK; Cheon HC; Jang IH; Choi EJ; Heo SC; Kang KT; Bae KH; Cho YS; Seo JK; Yoon JH; Lee TG; Kim JH
    Stem Cells; 2014 Dec; 32(12):3126-36. PubMed ID: 25185564
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.