These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 28662447)

  • 41. Moonlighting Metabolic Enzymes in Cancer: New Perspectives on the Redox Code.
    Jiang J; Peng L; Wang K; Huang C
    Antioxid Redox Signal; 2021 May; 34(13):979-1003. PubMed ID: 32631077
    [No Abstract]   [Full Text] [Related]  

  • 42. Epigenetic regulation of somatic cell reprogramming.
    Wang Y; Bi Y; Gao S
    Curr Opin Genet Dev; 2017 Oct; 46():156-163. PubMed ID: 28823984
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Metabolic reprogramming of metastatic breast cancer and melanoma by let-7a microRNA.
    Serguienko A; Grad I; Wennerstrøm AB; Meza-Zepeda LA; Thiede B; Stratford EW; Myklebost O; Munthe E
    Oncotarget; 2015 Feb; 6(4):2451-65. PubMed ID: 25669981
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of mechanical stimulation on the reprogramming of somatic cells into human-induced pluripotent stem cells.
    Kim YM; Kang YG; Park SH; Han MK; Kim JH; Shin JW; Shin JW
    Stem Cell Res Ther; 2017 Jun; 8(1):139. PubMed ID: 28595633
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A hierarchy in reprogramming capacity in different tissue microenvironments: what we know and what we need to know.
    Liebau S; Mahaddalkar PU; Kestler HA; Illing A; Seufferlein T; Kleger A
    Stem Cells Dev; 2013 Mar; 22(5):695-706. PubMed ID: 23167697
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Unveiling the critical role of REX1 in the regulation of human stem cell pluripotency.
    Son MY; Choi H; Han YM; Cho YS
    Stem Cells; 2013 Nov; 31(11):2374-87. PubMed ID: 23939908
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Serum starvation-induced cell cycle synchronization stimulated mouse rDNA transcription reactivation during somatic cell reprogramming into iPSCs.
    Zhao Q; Wu Y; Shan Z; Bai G; Wang Z; Hu J; Liu L; Li T; Shen J; Lei L
    Stem Cell Res Ther; 2016 Aug; 7(1):112. PubMed ID: 27515169
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Establishing the human naïve pluripotent state.
    Manor YS; Massarwa R; Hanna JH
    Curr Opin Genet Dev; 2015 Oct; 34():35-45. PubMed ID: 26291026
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A late transition in somatic cell reprogramming requires regulators distinct from the pluripotency network.
    Golipour A; David L; Liu Y; Jayakumaran G; Hirsch CL; Trcka D; Wrana JL
    Cell Stem Cell; 2012 Dec; 11(6):769-82. PubMed ID: 23217423
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mitochondrial pyruvate carrier function determines cell stemness and metabolic reprogramming in cancer cells.
    Li X; Han G; Li X; Kan Q; Fan Z; Li Y; Ji Y; Zhao J; Zhang M; Grigalavicius M; Berge V; Goscinski MA; Nesland JM; Suo Z
    Oncotarget; 2017 Jul; 8(28):46363-46380. PubMed ID: 28624784
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interference with the mitochondrial bioenergetics fuels reprogramming to pluripotency via facilitation of the glycolytic transition.
    Son MJ; Jeong BR; Kwon Y; Cho YS
    Int J Biochem Cell Biol; 2013 Nov; 45(11):2512-8. PubMed ID: 23939289
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Trib2 regulates the pluripotency of embryonic stem cells and enhances reprogramming efficiency.
    Do EK; Park JK; Cheon HC; Kwon YW; Heo SC; Choi EJ; Seo JK; Jang IH; Lee SC; Kim JH
    Exp Mol Med; 2017 Nov; 49(11):e401. PubMed ID: 29170476
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cellular Ontogeny and Hierarchy Influence the Reprogramming Efficiency of Human B Cells into Induced Pluripotent Stem Cells.
    Muñoz-López Á; van Roon EH; Romero-Moya D; López-Millan B; Stam RW; Colomer D; Nakanishi M; Bueno C; Menendez P
    Stem Cells; 2016 Mar; 34(3):581-7. PubMed ID: 26850912
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular barriers to processes of genetic reprogramming and cell transformation.
    Chestkov IV; Khomyakova EA; Vasilieva EA; Lagarkova MA; Kiselev SL
    Biochemistry (Mosc); 2014 Dec; 79(12):1297-307. PubMed ID: 25716723
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mitochondrial Heterogeneity in Stem Cells.
    Naik PP; Praharaj PP; Bhol CS; Panigrahi DP; Mahapatra KK; Patra S; Saha S; Bhutia SK
    Adv Exp Med Biol; 2019; 1123():179-194. PubMed ID: 31016601
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Roles of Reactive Oxygen Species in Cardiac Differentiation, Reprogramming, and Regenerative Therapies.
    Liang J; Wu M; Chen C; Mai M; Huang J; Zhu P
    Oxid Med Cell Longev; 2020; 2020():2102841. PubMed ID: 32908625
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Metabolic Roadmap for Somatic Stem Cell Fate.
    Ly CH; Lynch GS; Ryall JG
    Cell Metab; 2020 Jun; 31(6):1052-1067. PubMed ID: 32433923
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cell fate decisions: emerging roles for metabolic signals and cell morphology.
    Tatapudy S; Aloisio F; Barber D; Nystul T
    EMBO Rep; 2017 Dec; 18(12):2105-2118. PubMed ID: 29158350
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Stem cell reprogramming: blood, neurons, and beyond.
    Robin C; Jaffredo T; Zaehres H
    FEBS Lett; 2019 Dec; 593(23):3241-3243. PubMed ID: 31814136
    [No Abstract]   [Full Text] [Related]  

  • 60. An intermediate state in trans-differentiation with proliferation, metabolic, and epigenetic switching.
    Ye Z; Li W; Jiang Z; Wang E; Wang J
    iScience; 2021 Sep; 24(9):103057. PubMed ID: 34541470
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.