These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 28662490)

  • 1. Transformation and bioavailability of metal oxide nanoparticles in aquatic and terrestrial environments. A review.
    Amde M; Liu JF; Tan ZQ; Bekana D
    Environ Pollut; 2017 Nov; 230():250-267. PubMed ID: 28662490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical transformation of silver nanoparticles in aquatic environments: Mechanism, morphology and toxicity.
    Zhang W; Xiao B; Fang T
    Chemosphere; 2018 Jan; 191():324-334. PubMed ID: 29045933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological effects of nanoparticles on fish: a comparison of nanometals versus metal ions.
    Shaw BJ; Handy RD
    Environ Int; 2011 Aug; 37(6):1083-97. PubMed ID: 21474182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fate and risks of nanomaterials in aquatic and terrestrial environments.
    Batley GE; Kirby JK; McLaughlin MJ
    Acc Chem Res; 2013 Mar; 46(3):854-62. PubMed ID: 22759090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of Copper-Based Nanoparticles to Soil, Terrestrial, and Aquatic Systems: Critical Review of the State of the Science and Future Perspectives.
    Rajput V; Minkina T; Ahmed B; Sushkova S; Singh R; Soldatov M; Laratte B; Fedorenko A; Mandzhieva S; Blicharska E; Musarrat J; Saquib Q; Flieger J; Gorovtsov A
    Rev Environ Contam Toxicol; 2020; 252():51-96. PubMed ID: 31286265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental dynamics of metal oxide nanoparticles in heterogeneous systems: A review.
    Joo SH; Zhao D
    J Hazard Mater; 2017 Jan; 322(Pt A):29-47. PubMed ID: 26961405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transformation pathways and fate of engineered nanoparticles (ENPs) in distinct interactive environmental compartments: A review.
    Abbas Q; Yousaf B; Amina ; Ali MU; Munir MAM; El-Naggar A; Rinklebe J; Naushad M
    Environ Int; 2020 May; 138():105646. PubMed ID: 32179325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental transformations and ecological effects of iron-based nanoparticles.
    Lei C; Sun Y; Tsang DCW; Lin D
    Environ Pollut; 2018 Jan; 232():10-30. PubMed ID: 28966028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption behavior of lead on aquatic sediments contaminated with cerium dioxide nanoparticles.
    Wang C; Fan X; Wang P; Hou J; Ao Y; Miao L
    Environ Pollut; 2016 Dec; 219():416-424. PubMed ID: 27209338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Where does the toxicity of metal oxide nanoparticles come from: The nanoparticles, the ions, or a combination of both?
    Wang D; Lin Z; Wang T; Yao Z; Qin M; Zheng S; Lu W
    J Hazard Mater; 2016 May; 308():328-34. PubMed ID: 26852208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uptake, accumulation, and biotransformation of metal oxide nanoparticles by a marine suspension-feeder.
    Montes MO; Hanna SK; Lenihan HS; Keller AA
    J Hazard Mater; 2012 Jul; 225-226():139-45. PubMed ID: 22614026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications.
    Ju-Nam Y; Lead JR
    Sci Total Environ; 2008 Aug; 400(1-3):396-414. PubMed ID: 18715626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TiO
    Fan X; Wang C; Wang P; Hu B; Wang X
    J Hazard Mater; 2018 Jan; 342():41-50. PubMed ID: 28822248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of daylight on the fate of silver and zinc oxide nanoparticles in natural aquatic environments.
    Odzak N; Kistler D; Sigg L
    Environ Pollut; 2017 Jul; 226():1-11. PubMed ID: 28395184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding effect of interaction of nanoparticles and antibiotics on bacteria survival under aquatic conditions: Knowns and unknowns.
    Tyagi N; Kumar A
    Environ Res; 2020 Feb; 181():108945. PubMed ID: 31806288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Innovative Seizure of Metal/Metal Oxide Nanoparticles in Water Purification: A Critical Review of Potential Risks.
    Din MI; Nabi AG; Hussain Z; Arshad M; Intisar A; Sharif A; Ahmed E; Mehmood HA; Mirza ML
    Crit Rev Anal Chem; 2019; 49(6):534-541. PubMed ID: 30739482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental transformations of silver nanoparticles: impact on stability and toxicity.
    Levard C; Hotze EM; Lowry GV; Brown GE
    Environ Sci Technol; 2012 Jul; 46(13):6900-14. PubMed ID: 22339502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates.
    Tourinho PS; van Gestel CA; Lofts S; Svendsen C; Soares AM; Loureiro S
    Environ Toxicol Chem; 2012 Aug; 31(8):1679-92. PubMed ID: 22573562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ chemical transformations of silver nanoparticles along the water-sediment continuum.
    Khaksar M; Jolley DF; Sekine R; Vasilev K; Johannessen B; Donner E; Lombi E
    Environ Sci Technol; 2015 Jan; 49(1):318-25. PubMed ID: 25405257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal bioavailability in ecological risk assessment of freshwater ecosystems: From science to environmental management.
    Väänänen K; Leppänen MT; Chen X; Akkanen J
    Ecotoxicol Environ Saf; 2018 Jan; 147():430-446. PubMed ID: 28888793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.