These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 28662620)

  • 1. Multisubstrate specific flavin containing monooxygenase from Chlorella pyrenoidosa with potential application for phenolic wastewater remediation and biosensor application.
    Das B; Patra S
    Environ Technol; 2018 Aug; 39(16):2073-2089. PubMed ID: 28662620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Comprehensive Study on Chlorella pyrenoidosa for Phenol Degradation and its Potential Applicability as Biodiesel Feedstock and Animal Feed.
    Das B; Mandal TK; Patra S
    Appl Biochem Biotechnol; 2015 Jul; 176(5):1382-401. PubMed ID: 25951780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenol degradation by Acinetobacter calcoaceticus NCIB 8250.
    Paller G; Hommel RK; Kleber HP
    J Basic Microbiol; 1995; 35(5):325-35. PubMed ID: 8568644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The crystal structure of phenol hydroxylase in complex with FAD and phenol provides evidence for a concerted conformational change in the enzyme and its cofactor during catalysis.
    Enroth C; Neujahr H; Schneider G; Lindqvist Y
    Structure; 1998 May; 6(5):605-17. PubMed ID: 9634698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Phenolic Pollution on Interspecific Competition between
    Tan X; Dai K; Parajuli K; Hang X; Duan Z; Hu Y
    Int J Environ Res Public Health; 2019 Oct; 16(20):. PubMed ID: 31627270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of a chemically modified green macro alga as a biosorbent for phenol removal.
    Aravindhan R; Rao JR; Nair BU
    J Environ Manage; 2009 Apr; 90(5):1877-83. PubMed ID: 19138816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amperometric phenol biosensor based on a thermostable phenol hydroxylase.
    Metzger J; Reiss M; Hartmeier W
    Biosens Bioelectron; 1998 Nov; 13(10):1077-82. PubMed ID: 9842702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tyrosinase-immobilized CNT based biosensor for highly-sensitive detection of phenolic compounds.
    Wee Y; Park S; Kwon YH; Ju Y; Yeon KM; Kim J
    Biosens Bioelectron; 2019 May; 132():279-285. PubMed ID: 30884314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenol biodegradation by isolated Citrobacter strain under hypersaline conditions.
    Deng T; Wang H; Yang K
    Water Sci Technol; 2018 Jan; 77(1-2):504-510. PubMed ID: 29377834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of low-cost paper-based biosensor of polyphenol oxidase for detection of phenolic contaminants in water and clinical samples.
    Noori R; Perwez M; Mazumder JA; Sardar M
    Environ Sci Pollut Res Int; 2020 Aug; 27(24):30081-30092. PubMed ID: 32447731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of phenolic compounds by the yeast Candida tropicalis HP 15. II. Some properties of the first two enzymes of the degradation pathway.
    Krug M; Straube G
    J Basic Microbiol; 1986; 26(5):271-81. PubMed ID: 3783431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of phenol and phenolic compounds by Pseudomonas putida EKII.
    Hinteregger C; Leitner R; Loidl M; Ferschl A; Streichsbier F
    Appl Microbiol Biotechnol; 1992 May; 37(2):252-9. PubMed ID: 1368244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and partial characterization of extracellular NADPH-dependent phenol hydroxylase oxidizing phenol to catechol in Comamonas testosteroni.
    Turek M; Vilimkova L; Kremlackova V; Paca J; Halecky M; Paca J; Stiborova M
    Neuro Endocrinol Lett; 2011; 32 Suppl 1():137-45. PubMed ID: 22167219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of phenol degradation by high-efficiency binary mixed culture.
    Zeng HY; Jiang H; Xia K; Wang YJ; Huang Y
    Environ Sci Pollut Res Int; 2010 Jun; 17(5):1035-44. PubMed ID: 20300870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strain improvement of Chlorella sp. for phenol biodegradation by adaptive laboratory evolution.
    Wang L; Xue C; Wang L; Zhao Q; Wei W; Sun Y
    Bioresour Technol; 2016 Apr; 205():264-8. PubMed ID: 26803904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical treatment of phenol-containing wastewater by facet-tailored TiO
    Liu C; Min Y; Zhang AY; Si Y; Chen JJ; Yu HQ
    Water Res; 2019 Nov; 165():114980. PubMed ID: 31434012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterization of Indigenous Bacilli strains from an oil refinery wastewater with potential applications for phenol/cresol bioremediation.
    Harzallah B; Grama SB; Bousseboua H; Jouanneau Y; Yang J; Li J
    J Environ Manage; 2023 Apr; 332():117322. PubMed ID: 36724594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel biosensor based on Lactobacillus acidophilus for determination of phenolic compounds in milk products and wastewater.
    Sagiroglu A; Paluzar H; Ozcan HM; Okten S; Sen B
    Prep Biochem Biotechnol; 2011; 41(4):321-36. PubMed ID: 21967334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenol hydroxylase from Rhodococcus sp. P 1.
    Straube G
    J Basic Microbiol; 1987; 27(4):229-32. PubMed ID: 3430338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenol wastewater remediation: advanced oxidation processes coupled to a biological treatment.
    Rubalcaba A; Suárez-Ojeda ME; Stüber F; Fortuny A; Bengoa C; Metcalfe I; Font J; Carrera J; Fabregat A
    Water Sci Technol; 2007; 55(12):221-7. PubMed ID: 17674852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.