These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
412 related articles for article (PubMed ID: 28662640)
1. Community analysis of biofilms on flame-oxidized stainless steel anodes in microbial fuel cells fed with different substrates. Eyiuche NJ; Asakawa S; Yamashita T; Ikeguchi A; Kitamura Y; Yokoyama H BMC Microbiol; 2017 Jun; 17(1):145. PubMed ID: 28662640 [TBL] [Abstract][Full Text] [Related]
2. Enhanced electrical power generation using flame-oxidized stainless steel anode in microbial fuel cells and the anodic community structure. Yamashita T; Ishida M; Asakawa S; Kanamori H; Sasaki H; Ogino A; Katayose Y; Hatta T; Yokoyama H Biotechnol Biofuels; 2016; 9():62. PubMed ID: 26973716 [TBL] [Abstract][Full Text] [Related]
3. Convergent development of anodic bacterial communities in microbial fuel cells. Yates MD; Kiely PD; Call DF; Rismani-Yazdi H; Bibby K; Peccia J; Regan JM; Logan BE ISME J; 2012 Nov; 6(11):2002-13. PubMed ID: 22572637 [TBL] [Abstract][Full Text] [Related]
4. Diversity of microbes and potential exoelectrogenic bacteria on anode surface in microbial fuel cells. Sun Y; Zuo J; Cui L; Deng Q; Dang Y J Gen Appl Microbiol; 2010 Feb; 56(1):19-29. PubMed ID: 20339216 [TBL] [Abstract][Full Text] [Related]
5. Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Chae KJ; Choi MJ; Lee JW; Kim KY; Kim IS Bioresour Technol; 2009 Jul; 100(14):3518-25. PubMed ID: 19345574 [TBL] [Abstract][Full Text] [Related]
6. Dynamic changes in the microbial community composition in microbial fuel cells fed with sucrose. Beecroft NJ; Zhao F; Varcoe JR; Slade RC; Thumser AE; Avignone-Rossa C Appl Microbiol Biotechnol; 2012 Jan; 93(1):423-37. PubMed ID: 21984392 [TBL] [Abstract][Full Text] [Related]
7. Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Jung S; Regan JM Appl Microbiol Biotechnol; 2007 Nov; 77(2):393-402. PubMed ID: 17786426 [TBL] [Abstract][Full Text] [Related]
8. Comparison of Anodic Community in Microbial Fuel Cells with Iron Oxide-Reducing Community. Yokoyama H; Ishida M; Yamashita T J Microbiol Biotechnol; 2016 Apr; 26(4):757-62. PubMed ID: 26767577 [TBL] [Abstract][Full Text] [Related]
9. Microbial community structure in a dual chamber microbial fuel cell fed with brewery waste for azo dye degradation and electricity generation. Miran W; Nawaz M; Kadam A; Shin S; Heo J; Jang J; Lee DS Environ Sci Pollut Res Int; 2015 Sep; 22(17):13477-85. PubMed ID: 25940481 [TBL] [Abstract][Full Text] [Related]
10. Isolation of the exoelectrogenic denitrifying bacterium Comamonas denitrificans based on dilution to extinction. Xing D; Cheng S; Logan BE; Regan JM Appl Microbiol Biotechnol; 2010 Feb; 85(5):1575-87. PubMed ID: 19779712 [TBL] [Abstract][Full Text] [Related]
11. Effect of Contact Area and Shape of Anode Current Collectors on Bacterial Community Structure in Microbial Fuel Cells. Paitier A; Haddour N; Gondran C; Vogel TM Molecules; 2022 Mar; 27(7):. PubMed ID: 35408642 [TBL] [Abstract][Full Text] [Related]
12. Anode macrostructures influence electricity generation in microbial fuel cells for wastewater treatment. Ishii Y; Miyahara M; Watanabe K J Biosci Bioeng; 2017 Jan; 123(1):91-95. PubMed ID: 27514908 [TBL] [Abstract][Full Text] [Related]
13. Microbial communities and electrochemical performance of titanium-based anodic electrodes in a microbial fuel cell. Michaelidou U; ter Heijne A; Euverink GJ; Hamelers HV; Stams AJ; Geelhoed JS Appl Environ Microbiol; 2011 Feb; 77(3):1069-75. PubMed ID: 21131513 [TBL] [Abstract][Full Text] [Related]
15. Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera. Kiely PD; Call DF; Yates MD; Regan JM; Logan BE Appl Microbiol Biotechnol; 2010 Sep; 88(1):371-80. PubMed ID: 20632002 [TBL] [Abstract][Full Text] [Related]
16. Electricity generation and microbial community response to substrate changes in microbial fuel cell. Zhang Y; Min B; Huang L; Angelidaki I Bioresour Technol; 2011 Jan; 102(2):1166-73. PubMed ID: 20952193 [TBL] [Abstract][Full Text] [Related]
17. Enhanced electrode-reducing rate during the enrichment process in an air-cathode microbial fuel cell. Ishii S; Logan BE; Sekiguchi Y Appl Microbiol Biotechnol; 2012 May; 94(4):1087-94. PubMed ID: 22223104 [TBL] [Abstract][Full Text] [Related]
18. Resilience, Dynamics, and Interactions within a Model Multispecies Exoelectrogenic-Biofilm Community. Prokhorova A; Sturm-Richter K; Doetsch A; Gescher J Appl Environ Microbiol; 2017 Mar; 83(6):. PubMed ID: 28087529 [TBL] [Abstract][Full Text] [Related]
19. Does pre-enrichment of anodes with acetate to select for Christgen B; Spurr M; Milner EM; Izadi P; McCann C; Yu E; Curtis T; Scott K; Head IM Front Microbiol; 2023; 14():1199286. PubMed ID: 38075904 [TBL] [Abstract][Full Text] [Related]
20. Discovery of commonly existing anode biofilm microbes in two different wastewater treatment MFCs using FLX Titanium pyrosequencing. Lee TK; Van Doan T; Yoo K; Choi S; Kim C; Park J Appl Microbiol Biotechnol; 2010 Aug; 87(6):2335-43. PubMed ID: 20532761 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]