BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 28662642)

  • 21. Characterization of Nicotiana tabacum genotypes possessing deletion mutations that affect potyvirus resistance and the production of trichome exudates.
    Dluge KL; Song Z; Wang B; Tyler Steede W; Xiao B; Liu Y; Dewey RE
    BMC Genomics; 2018 Jun; 19(1):484. PubMed ID: 29925313
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcriptome profiling and validation of gene based single nucleotide polymorphisms (SNPs) in sorghum genotypes with contrasting responses to cold stress.
    Chopra R; Burow G; Hayes C; Emendack Y; Xin Z; Burke J
    BMC Genomics; 2015 Dec; 16():1040. PubMed ID: 26645959
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gene-coexpression network analysis identifies specific modules and hub genes related to cold stress in rice.
    Zeng Z; Zhang S; Li W; Chen B; Li W
    BMC Genomics; 2022 Apr; 23(1):251. PubMed ID: 35365095
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The negative influence of N-mediated TMV resistance on yield in tobacco: linkage drag versus pleiotropy.
    Lewis RS; Linger LR; Wolff MF; Wernsman EA
    Theor Appl Genet; 2007 Jul; 115(2):169-78. PubMed ID: 17492424
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential gene expression in the peripheral blood of Chinese Sanhe cattle exposed to severe cold stress.
    Xu Q; Wang YC; Liu R; Brito LF; Kang L; Yu Y; Wang DS; Wu HJ; Liu A
    Genet Mol Res; 2017 Jun; 16(2):. PubMed ID: 28653738
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Integrating transcriptome and metabolome reveals molecular networks involved in genetic and environmental variation in tobacco.
    Liu P; Luo J; Zheng Q; Chen Q; Zhai N; Xu S; Xu Y; Jin L; Xu G; Lu X; Xu G; Wang G; Shao J; Xu HM; Cao P; Zhou H; Wang X
    DNA Res; 2020 Apr; 27(2):. PubMed ID: 32324848
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combined transcriptomic and metabolomic approach uncovers molecular mechanisms of cold tolerance in a temperate flesh fly.
    Teets NM; Peyton JT; Ragland GJ; Colinet H; Renault D; Hahn DA; Denlinger DL
    Physiol Genomics; 2012 Aug; 44(15):764-77. PubMed ID: 22735925
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Untargeted Metabolomics of
    Ma DM; Gandra SVS; Manoharlal R; La Hovary C; Xie DY
    Front Plant Sci; 2019; 10():1370. PubMed ID: 31737005
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comparison of the low temperature transcriptomes of two tomato genotypes that differ in freezing tolerance: Solanum lycopersicum and Solanum habrochaites.
    Chen H; Chen X; Chen D; Li J; Zhang Y; Wang A
    BMC Plant Biol; 2015 Jun; 15():132. PubMed ID: 26048292
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The identification of novel and differentially expressed apple-tree genes under low-temperature stress using high-throughput Illumina sequencing.
    Du F; Xu JN; Li D; Wang XY
    Mol Biol Rep; 2015 Mar; 42(3):569-80. PubMed ID: 25344111
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MicroRNAs regulate gene plasticity during cold shock in zebrafish larvae.
    Hung IC; Hsiao YC; Sun HS; Chen TM; Lee SJ
    BMC Genomics; 2016 Nov; 17(1):922. PubMed ID: 27846817
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Canalization of gene expression is a major signature of regulatory cold adaptation in temperate Drosophila melanogaster.
    von Heckel K; Stephan W; Hutter S
    BMC Genomics; 2016 Aug; 17():574. PubMed ID: 27502401
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Overexpression of a novel cold-responsive transcript factor LcFIN1 from sheepgrass enhances tolerance to low temperature stress in transgenic plants.
    Gao Q; Li X; Jia J; Zhao P; Liu P; Liu Z; Ge L; Chen S; Qi D; Deng B; Lee BH; Liu G; Cheng L
    Plant Biotechnol J; 2016 Mar; 14(3):861-74. PubMed ID: 26234381
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative transcriptome and metabolomic profiling reveal the complex mechanisms underlying the developmental dynamics of tobacco leaves.
    Chang W; Zhao H; Yu S; Yu J; Cai K; Sun W; Liu X; Li X; Yu M; Ali S; Zhang K; Qu C; Lei B; Lu K
    Genomics; 2020 Nov; 112(6):4009-4022. PubMed ID: 32650092
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integrated Transcriptomics and Metabolomics Analyses Provide Insights into Qingke in Response to Cold Stress.
    Xu C; Gui Z; Huang Y; Yang H; Luo J; Zeng X
    J Agric Food Chem; 2023 Nov; 71(47):18345-18358. PubMed ID: 37966343
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative transcriptomics analysis reveals difference of key gene expression between banana and plantain in response to cold stress.
    Yang QS; Gao J; He WD; Dou TX; Ding LJ; Wu JH; Li CY; Peng XX; Zhang S; Yi GJ
    BMC Genomics; 2015 Jun; 16(1):446. PubMed ID: 26059100
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Variation of genomic DNA methylation in the nitrate reductase gene of sibling tobacco (Nicotiana tabacum) cultivars.
    Fu SL; Tang ZX; Liu L; Lu LM; Huang YB
    Genet Mol Res; 2012 May; 11(2):1169-77. PubMed ID: 22614343
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heterologous expression of antifreeze protein gene AnAFP from Ammopiptanthus nanus enhances cold tolerance in Escherichia coli and tobacco.
    Deng LQ; Yu HQ; Liu YP; Jiao PP; Zhou SF; Zhang SZ; Li WC; Fu FL
    Gene; 2014 Apr; 539(1):132-40. PubMed ID: 24502990
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Overexpression of MfPIP2-7 from Medicago falcata promotes cold tolerance and growth under NO3 (-) deficiency in transgenic tobacco plants.
    Zhuo C; Wang T; Guo Z; Lu S
    BMC Plant Biol; 2016 Jun; 16(1):138. PubMed ID: 27301445
    [TBL] [Abstract][Full Text] [Related]  

  • 40. De novo assembly and analysis of the transcriptome of Ocimum americanum var. pilosum under cold stress.
    Zhan X; Yang L; Wang D; Zhu JK; Lang Z
    BMC Genomics; 2016 Mar; 17():209. PubMed ID: 26955811
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.