BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

579 related articles for article (PubMed ID: 28663102)

  • 1. RNase H1-Dependent Antisense Oligonucleotides Are Robustly Active in Directing RNA Cleavage in Both the Cytoplasm and the Nucleus.
    Liang XH; Sun H; Nichols JG; Crooke ST
    Mol Ther; 2017 Sep; 25(9):2075-2092. PubMed ID: 28663102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translation can affect the antisense activity of RNase H1-dependent oligonucleotides targeting mRNAs.
    Liang XH; Nichols JG; Sun H; Crooke ST
    Nucleic Acids Res; 2018 Jan; 46(1):293-313. PubMed ID: 29165591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed RNase H Cleavage of Nascent Transcripts Causes Transcription Termination.
    Lai F; Damle SS; Ling KK; Rigo F
    Mol Cell; 2020 Mar; 77(5):1032-1043.e4. PubMed ID: 31924447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The rates of the major steps in the molecular mechanism of RNase H1-dependent antisense oligonucleotide induced degradation of RNA.
    Vickers TA; Crooke ST
    Nucleic Acids Res; 2015 Oct; 43(18):8955-63. PubMed ID: 26384424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antisense oligonucleotides capable of promoting specific target mRNA reduction via competing RNase H1-dependent and independent mechanisms.
    Vickers TA; Crooke ST
    PLoS One; 2014; 9(10):e108625. PubMed ID: 25299183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. XRN2 is required for the degradation of target RNAs by RNase H1-dependent antisense oligonucleotides.
    Hori S; Yamamoto T; Obika S
    Biochem Biophys Res Commun; 2015 Aug; 464(2):506-11. PubMed ID: 26159921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding of phosphorothioate oligonucleotides with RNase H1 can cause conformational changes in the protein and alter the interactions of RNase H1 with other proteins.
    Zhang L; Vickers TA; Sun H; Liang XH; Crooke ST
    Nucleic Acids Res; 2021 Mar; 49(5):2721-2739. PubMed ID: 33577678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Some ASOs that bind in the coding region of mRNAs and induce RNase H1 cleavage can cause increases in the pre-mRNAs that may blunt total activity.
    Liang XH; Nichols JG; De Hoyos CL; Crooke ST
    Nucleic Acids Res; 2020 Sep; 48(17):9840-9858. PubMed ID: 32870273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1 dependent promiscuous reduction of very long pre-mRNA transcripts.
    Burel SA; Hart CE; Cauntay P; Hsiao J; Machemer T; Katz M; Watt A; Bui HH; Younis H; Sabripour M; Freier SM; Hung G; Dan A; Prakash TP; Seth PP; Swayze EE; Bennett CF; Crooke ST; Henry SP
    Nucleic Acids Res; 2016 Mar; 44(5):2093-109. PubMed ID: 26553810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NAT10 and DDX21 Proteins Interact with RNase H1 and Affect the Performance of Phosphorothioate Oligonucleotides.
    Zhang L; Bernardo KD; Vickers TA; Tian J; Liang XH; Crooke ST
    Nucleic Acid Ther; 2022 Aug; 32(4):280-299. PubMed ID: 35852833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defining the factors that contribute to on-target specificity of antisense oligonucleotides.
    Lima WF; Vickers TA; Nichols J; Li C; Crooke ST
    PLoS One; 2014; 9(7):e101752. PubMed ID: 25072142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. mRNA levels can be reduced by antisense oligonucleotides via no-go decay pathway.
    Liang XH; Nichols JG; Hsu CW; Vickers TA; Crooke ST
    Nucleic Acids Res; 2019 Jul; 47(13):6900-6916. PubMed ID: 31165876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A cytoplasmic pathway for gapmer antisense oligonucleotide-mediated gene silencing in mammalian cells.
    Castanotto D; Lin M; Kowolik C; Wang L; Ren XQ; Soifer HS; Koch T; Hansen BR; Oerum H; Armstrong B; Wang Z; Bauer P; Rossi J; Stein CA
    Nucleic Acids Res; 2015 Oct; 43(19):9350-61. PubMed ID: 26433227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonsense-mediated decay as a terminating mechanism for antisense oligonucleotides.
    Ward AJ; Norrbom M; Chun S; Bennett CF; Rigo F
    Nucleic Acids Res; 2014 May; 42(9):5871-9. PubMed ID: 24589581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic and subcellular analysis of PS-ASO/protein interactions with P54nrb and RNase H1.
    Vickers TA; Rahdar M; Prakash TP; Crooke ST
    Nucleic Acids Res; 2019 Nov; 47(20):10865-10880. PubMed ID: 31495875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of antisense oligonucleotide-induced RNA structure on Escherichia coli RNase H1 activity.
    Lima WF; Mohan V; Crooke ST
    J Biol Chem; 1997 Jul; 272(29):18191-9. PubMed ID: 9218455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclear antisense effects in cyclophilin A pre-mRNA splicing by oligonucleotides: a comparison of tricyclo-DNA with LNA.
    Ittig D; Liu S; Renneberg D; Schümperli D; Leumann CJ
    Nucleic Acids Res; 2004; 32(1):346-53. PubMed ID: 14726483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gapmer Antisense Oligonucleotides Targeting 5S Ribosomal RNA Can Reduce Mature 5S Ribosomal RNA by Two Mechanisms.
    Pollak AJ; Hickman JH; Liang XH; Crooke ST
    Nucleic Acid Ther; 2020 Oct; 30(5):312-324. PubMed ID: 32589504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding affinity and specificity of Escherichia coli RNase H1: impact on the kinetics of catalysis of antisense oligonucleotide-RNA hybrids.
    Lima WF; Crooke ST
    Biochemistry; 1997 Jan; 36(2):390-8. PubMed ID: 9003192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Allele-Selective Inhibition of Mutant Huntingtin with 2-Thio- and C5- Triazolylphenyl-Deoxythymidine-Modified Antisense Oligonucleotides.
    Østergaard ME; Kumar P; Nichols J; Watt A; Sharma PK; Nielsen P; Seth PP
    Nucleic Acid Ther; 2015 Oct; 25(5):266-74. PubMed ID: 26222265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.