BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 28663331)

  • 1. Multiplexed Gene Editing and Protein Overexpression Using a
    Cody WB; Scholthof HB; Mirkov TE
    Plant Physiol; 2017 Sep; 175(1):23-35. PubMed ID: 28663331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA silencing suppressor-influenced performance of a virus vector delivering both guide RNA and Cas9 for CRISPR gene editing.
    Chiong KT; Cody WB; Scholthof HB
    Sci Rep; 2021 Mar; 11(1):6769. PubMed ID: 33762584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Native Processing of Single Guide RNA Transcripts to Create Catalytic Cas9/Single Guide RNA Complexes in Planta.
    Cody WB; Scholthof HB
    Plant Physiol; 2020 Oct; 184(2):1194-1206. PubMed ID: 32665336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Cas9 multiplex editing using unspaced sgRNA arrays engineering in a Potato virus X vector.
    Uranga M; Aragonés V; Selma S; Vázquez-Vilar M; Orzáez D; Daròs JA
    Plant J; 2021 Apr; 106(2):555-565. PubMed ID: 33484202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing.
    Liang G; Zhang H; Lou D; Yu D
    Sci Rep; 2016 Feb; 6():21451. PubMed ID: 26891616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manipulating the Biosynthesis of Bioactive Compound Alkaloids for Next-Generation Metabolic Engineering in Opium Poppy Using CRISPR-Cas 9 Genome Editing Technology.
    Alagoz Y; Gurkok T; Zhang B; Unver T
    Sci Rep; 2016 Aug; 6():30910. PubMed ID: 27483984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impacts of RNA Mobility Signals on Virus Induced Somatic and Germline Gene Editing.
    Beernink BM; Lappe RR; Bredow M; Whitham SA
    Front Genome Ed; 2022; 4():925088. PubMed ID: 35755451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scaffold-mediated non-viral delivery platform for CRISPR/Cas9-based genome editing.
    Chin JS; Chooi WH; Wang H; Ong W; Leong KW; Chew SY
    Acta Biomater; 2019 May; 90():60-70. PubMed ID: 30978509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene editing vectors for studying nicotinic acetylcholine receptors in cholinergic transmission.
    Peng C; Yan Y; Kim VJ; Engle SE; Berry JN; McIntosh JM; Neve RL; Drenan RM
    Eur J Neurosci; 2019 Aug; 50(3):2224-2238. PubMed ID: 29779223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of the CRISPR/Cas System for Generation of Pathogen-Resistant Plants.
    Makarova SS; Khromov AV; Spechenkova NA; Taliansky ME; Kalinina NO
    Biochemistry (Mosc); 2018 Dec; 83(12):1552-1562. PubMed ID: 30878030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas9-mediated gene editing in an exogenous transgene and an endogenous sex determination gene in the Caribbean fruit fly, Anastrepha suspensa.
    Li J; Handler AM
    Gene; 2019 Apr; 691():160-166. PubMed ID: 30611840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Usefulness of current sgRNA design guidelines and in vitro cleavage assays for plant CRISPR/Cas genome editing: a case targeting the polyphenol oxidase gene family in eggplant (Solanum melongena L.).
    Sagarbarria MGS; Caraan JAM; Layos AJG
    Transgenic Res; 2023 Dec; 32(6):561-573. PubMed ID: 37874448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiplex Single-Nucleotide Microbial Genome Editing Achieved by CRISPR-Cas9 Using 5'-End-Truncated sgRNAs.
    Lim SR; Lee HJ; Kim HJ; Lee SJ
    ACS Synth Biol; 2023 Jul; 12(7):2203-2207. PubMed ID: 37368988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potato Virus X Vector-Mediated DNA-Free Genome Editing in Plants.
    Ariga H; Toki S; Ishibashi K
    Plant Cell Physiol; 2020 Dec; 61(11):1946-1953. PubMed ID: 32991731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A piggyBac-based toolkit for inducible genome editing in mammalian cells.
    Schertzer MD; Thulson E; Braceros KCA; Lee DM; Hinkle ER; Murphy RM; Kim SO; Vitucci ECM; Calabrese JM
    RNA; 2019 Aug; 25(8):1047-1058. PubMed ID: 31101683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas9-Derived Mutations Both Inhibit HIV-1 Replication and Accelerate Viral Escape.
    Wang Z; Pan Q; Gendron P; Zhu W; Guo F; Cen S; Wainberg MA; Liang C
    Cell Rep; 2016 Apr; 15(3):481-489. PubMed ID: 27068471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the potential of genome editing CRISPR-Cas9 technology.
    Singh V; Braddick D; Dhar PK
    Gene; 2017 Jan; 599():1-18. PubMed ID: 27836667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variation in Mutation Spectra Among CRISPR/Cas9 Mutagenized Poplars.
    Elorriaga E; Klocko AL; Ma C; Strauss SH
    Front Plant Sci; 2018; 9():594. PubMed ID: 29868058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system.
    Liu X; Homma A; Sayadi J; Yang S; Ohashi J; Takumi T
    Sci Rep; 2016 Jan; 6():19675. PubMed ID: 26813419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single Molecule FRET Analysis of CRISPR Cas9 Single Guide RNA Folding Dynamics.
    Okafor IC; Ha T
    J Phys Chem B; 2023 Jan; 127(1):45-51. PubMed ID: 36563314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.