BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 28663331)

  • 21. Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system.
    Liu X; Homma A; Sayadi J; Yang S; Ohashi J; Takumi T
    Sci Rep; 2016 Jan; 6():19675. PubMed ID: 26813419
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single Molecule FRET Analysis of CRISPR Cas9 Single Guide RNA Folding Dynamics.
    Okafor IC; Ha T
    J Phys Chem B; 2023 Jan; 127(1):45-51. PubMed ID: 36563314
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Delivering Cas9/sgRNA ribonucleoprotein (RNP) by lentiviral capsid-based bionanoparticles for efficient 'hit-and-run' genome editing.
    Lyu P; Javidi-Parsijani P; Atala A; Lu B
    Nucleic Acids Res; 2019 Sep; 47(17):e99. PubMed ID: 31299082
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Disrupting Protein Expression with Double-Clicked sgRNA-Cas9 Complexes: A Modular Approach to CRISPR Gene Editing.
    Tijaro-Bulla S; Osman EA; St Laurent CD; McCord KA; Macauley MS; Gibbs JM
    ACS Chem Biol; 2023 Oct; 18(10):2156-2162. PubMed ID: 37556411
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficient genome editing by CRISPR/Cas9 with a tRNA-sgRNA fusion in the methylotrophic yeast Ogataea polymorpha.
    Numamoto M; Maekawa H; Kaneko Y
    J Biosci Bioeng; 2017 Nov; 124(5):487-492. PubMed ID: 28666889
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Virus-Induced Heritable Gene Editing in Plants.
    Nagalakshmi U; Meier N; Dinesh-Kumar SP
    Methods Mol Biol; 2024; 2724():273-288. PubMed ID: 37987913
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SWISS: multiplexed orthogonal genome editing in plants with a Cas9 nickase and engineered CRISPR RNA scaffolds.
    Li C; Zong Y; Jin S; Zhu H; Lin D; Li S; Qiu JL; Wang Y; Gao C
    Genome Biol; 2020 Jun; 21(1):141. PubMed ID: 32546280
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Straightforward Delivery of Linearized Double-Stranded DNA Encoding sgRNA and Donor DNA for the Generation of Single Nucleotide Variants Based on the CRISPR/Cas9 System.
    Jun S; Lim H; Jang H; Lee W; Ahn J; Lee JH; Bang D
    ACS Synth Biol; 2018 Jul; 7(7):1651-1659. PubMed ID: 29924933
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved sgRNA design in bacteria via genome-wide activity profiling.
    Guo J; Wang T; Guan C; Liu B; Luo C; Xie Z; Zhang C; Xing XH
    Nucleic Acids Res; 2018 Aug; 46(14):7052-7069. PubMed ID: 29982721
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulation of Equid Herpesvirus-1 Replication Dynamics
    Hassanien RT; Thieulent CJ; Carossino M; Li G; Balasuriya UBR
    Viruses; 2024 Mar; 16(3):. PubMed ID: 38543774
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Non-homologous dsODN increases the mutagenic effects of CRISPR-Cas9 to disrupt oncogene E7 in HPV positive cells.
    Fan W; Yu M; Wang X; Xie W; Tian R; Cui Z; Jin Z; Huang Z; Das BC; Severinov K; Hitzeroth II; Debata PR; Tian X; Xie H; Lang B; Tan J; Xu H; Hu Z
    Cancer Gene Ther; 2022 Jun; 29(6):758-769. PubMed ID: 34112918
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design.
    Zhao Y; Zhang C; Liu W; Gao W; Liu C; Song G; Li WX; Mao L; Chen B; Xu Y; Li X; Xie C
    Sci Rep; 2016 Apr; 6():23890. PubMed ID: 27033976
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [ADRB2 Gene Knockout in Human Primary T Cells by Multiple sgRNAs Construced using CRISPR/Cas9 Technology].
    Sun Y; Liu D; Shi M; Zheng JN
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2019 Oct; 27(5):1682-1690. PubMed ID: 31607332
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multigene editing: current approaches and beyond.
    Peng H; Zheng Y; Zhao Z; Li J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33428725
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Software-based screening for efficient sgRNAs in Lactococcus lactis.
    Wang H; Ai L; Xia Y; Wang G; Xiong Z; Song X
    J Sci Food Agric; 2024 Jan; 104(2):1200-1206. PubMed ID: 37647419
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CRISPR/Cas9-Mediated Genome Editing in Soybean Hairy Roots.
    Cai Y; Chen L; Liu X; Sun S; Wu C; Jiang B; Han T; Hou W
    PLoS One; 2015; 10(8):e0136064. PubMed ID: 26284791
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Zebrafish Embryonic Slow Muscle Is a Rapid System for Genetic Analysis of Sarcomere Organization by CRISPR/Cas9, but Not NgAgo.
    Cai M; Si Y; Zhang J; Tian Z; Du S
    Mar Biotechnol (NY); 2018 Apr; 20(2):168-181. PubMed ID: 29374849
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An overview of designing and selection of sgRNAs for precise genome editing by the CRISPR-Cas9 system in plants.
    Uniyal AP; Mansotra K; Yadav SK; Kumar V
    3 Biotech; 2019 Jun; 9(6):223. PubMed ID: 31139538
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CRISPR/Cas9 mediated editing of the Quorn fungus Fusarium venenatum A3/5 by transient expression of Cas9 and sgRNAs targeting endogenous marker gene PKS12.
    Wilson FM; Harrison RJ
    Fungal Biol Biotechnol; 2021 Nov; 8(1):15. PubMed ID: 34789333
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Generation of a TP53-modified porcine cancer model by CRISPR/Cas9-mediated gene modification in porcine zygotes via electroporation.
    Tanihara F; Hirata M; Nguyen NT; Le QA; Hirano T; Takemoto T; Nakai M; Fuchimoto DI; Otoi T
    PLoS One; 2018; 13(10):e0206360. PubMed ID: 30352075
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.