These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 28663443)

  • 1. Cellulosic biofuel contributions to a sustainable energy future: Choices and outcomes.
    Robertson GP; Hamilton SK; Barham BL; Dale BE; Izaurralde RC; Jackson RD; Landis DA; Swinton SM; Thelen KD; Tiedje JM
    Science; 2017 Jun; 356(6345):. PubMed ID: 28663443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Landscape patterns of bioenergy in a changing climate: implications for crop allocation and land-use competition.
    Graves RA; Pearson SM; Turner MG
    Ecol Appl; 2016 Mar; 26(2):515-29. PubMed ID: 27209792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Land Use Change to Agriculture in the U.S. Lake States: Impacts on Cellulosic Biomass Potential and Natural Lands.
    Mladenoff DJ; Sahajpal R; Johnson CP; Rothstein DE
    PLoS One; 2016; 11(2):e0148566. PubMed ID: 26866474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate change mitigation potentials of biofuels produced from perennial crops and natural regrowth on abandoned and degraded cropland in Nordic countries.
    Næss JS; Hu X; Gvein MH; Iordan CM; Cavalett O; Dorber M; Giroux B; Cherubini F
    J Environ Manage; 2023 Jan; 325(Pt A):116474. PubMed ID: 36274301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustainable bioenergy production from marginal lands in the US Midwest.
    Gelfand I; Sahajpal R; Zhang X; Izaurralde RC; Gross KL; Robertson GP
    Nature; 2013 Jan; 493(7433):514-7. PubMed ID: 23334409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions among bioenergy feedstock choices, landscape dynamics, and land use.
    Dale VH; Kline KL; Wright LL; Perlack RD; Downing M; Graham RL
    Ecol Appl; 2011 Jun; 21(4):1039-54. PubMed ID: 21774412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Senescence and nitrogen use efficiency in perennial grasses for forage and biofuel production.
    Yang J; Udvardi M
    J Exp Bot; 2018 Feb; 69(4):855-865. PubMed ID: 29444307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust paths to net greenhouse gas mitigation and negative emissions via advanced biofuels.
    Field JL; Richard TL; Smithwick EAH; Cai H; Laser MS; LeBauer DS; Long SP; Paustian K; Qin Z; Sheehan JJ; Smith P; Wang MQ; Lynd LR
    Proc Natl Acad Sci U S A; 2020 Sep; 117(36):21968-21977. PubMed ID: 32839342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Life cycle assessment of first-generation biofuels using a nitrogen crop model.
    Gallejones P; Pardo G; Aizpurua A; del Prado A
    Sci Total Environ; 2015 Feb; 505():1191-201. PubMed ID: 25461117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward the domestication of lignocellulosic energy crops: learning from food crop domestication.
    Sang T
    J Integr Plant Biol; 2011 Feb; 53(2):96-104. PubMed ID: 21261812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon consequences and agricultural implications of growing biofuel crops on marginal agricultural lands in China.
    Qin Z; Zhuang Q; Zhu X; Cai X; Zhang X
    Environ Sci Technol; 2011 Dec; 45(24):10765-72. PubMed ID: 22085109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of bioenergy on biodiversity arising from land-use change and crop type.
    Núñez-Regueiro MM; Siddiqui SF; Fletcher RJ
    Conserv Biol; 2021 Feb; 35(1):77-87. PubMed ID: 31854480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling Miscanthus in the soil and water assessment tool (SWAT) to simulate its water quality effects as a bioenergy crop.
    Ng TL; Eheart JW; Cai X; Miguez F
    Environ Sci Technol; 2010 Sep; 44(18):7138-44. PubMed ID: 20681575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water impacts of U.S. biofuels: Insights from an assessment combining economic and biophysical models.
    Teter J; Yeh S; Khanna M; Berndes G
    PLoS One; 2018; 13(9):e0204298. PubMed ID: 30265704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Consequences of the cultivation of energy crops for the global nitrogen cycle.
    Bouwman AF; Van Grinsven JJ; Eickhout B
    Ecol Appl; 2010 Jan; 20(1):101-9. PubMed ID: 20349833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellulosic biofuels from crop residue and groundwater extraction in the US Plains: the case of Nebraska.
    Sesmero JP
    J Environ Manage; 2014 Nov; 144():218-25. PubMed ID: 24956467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Land availability for biofuel production.
    Cai X; Zhang X; Wang D
    Environ Sci Technol; 2011 Jan; 45(1):334-9. PubMed ID: 21142000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustainability of soil fertility and the use of lignocellulosic crop harvest residues for the production of biofuels: a literature review.
    Reijnders L
    Environ Technol; 2013; 34(13-16):1725-34. PubMed ID: 24350430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon debt of Conservation Reserve Program (CRP) grasslands converted to bioenergy production.
    Gelfand I; Zenone T; Jasrotia P; Chen J; Hamilton SK; Robertson GP
    Proc Natl Acad Sci U S A; 2011 Aug; 108(33):13864-9. PubMed ID: 21825117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Managing nitrogen for sustainable development.
    Zhang X; Davidson EA; Mauzerall DL; Searchinger TD; Dumas P; Shen Y
    Nature; 2015 Dec; 528(7580):51-9. PubMed ID: 26595273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.