BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 28663497)

  • 1. Carbon nanotube transistors scaled to a 40-nanometer footprint.
    Cao Q; Tersoff J; Farmer DB; Zhu Y; Han SJ
    Science; 2017 Jun; 356(6345):1369-1372. PubMed ID: 28663497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics.
    Liu L; Han J; Xu L; Zhou J; Zhao C; Ding S; Shi H; Xiao M; Ding L; Ma Z; Jin C; Zhang Z; Peng LM
    Science; 2020 May; 368(6493):850-856. PubMed ID: 32439787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. End-bonded contacts for carbon nanotube transistors with low, size-independent resistance.
    Cao Q; Han SJ; Tersoff J; Franklin AD; Zhu Y; Zhang Z; Tulevski GS; Tang J; Haensch W
    Science; 2015 Oct; 350(6256):68-72. PubMed ID: 26430114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dirac-source field-effect transistors as energy-efficient, high-performance electronic switches.
    Qiu C; Liu F; Xu L; Deng B; Xiao M; Si J; Lin L; Zhang Z; Wang J; Guo H; Peng H; Peng LM
    Science; 2018 Jul; 361(6400):387-392. PubMed ID: 29903885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scaling carbon nanotube complementary transistors to 5-nm gate lengths.
    Qiu C; Zhang Z; Xiao M; Yang Y; Zhong D; Peng LM
    Science; 2017 Jan; 355(6322):271-276. PubMed ID: 28104886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sub-10 nm carbon nanotube transistor.
    Franklin AD; Luisier M; Han SJ; Tulevski G; Breslin CM; Gignac L; Lundstrom MS; Haensch W
    Nano Lett; 2012 Feb; 12(2):758-62. PubMed ID: 22260387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A subthermionic tunnel field-effect transistor with an atomically thin channel.
    Sarkar D; Xie X; Liu W; Cao W; Kang J; Gong Y; Kraemer S; Ajayan PM; Banerjee K
    Nature; 2015 Oct; 526(7571):91-5. PubMed ID: 26432247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics.
    Cao Q; Han SJ; Tulevski GS; Zhu Y; Lu DD; Haensch W
    Nat Nanotechnol; 2013 Mar; 8(3):180-6. PubMed ID: 23353673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fringing-field dielectrophoretic assembly of ultrahigh-density semiconducting nanotube arrays with a self-limited pitch.
    Cao Q; Han SJ; Tulevski GS
    Nat Commun; 2014 Sep; 5():5071. PubMed ID: 25256905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origins and characteristics of the threshold voltage variability of quasiballistic single-walled carbon nanotube field-effect transistors.
    Cao Q; Han SJ; Penumatcha AV; Frank MM; Tulevski GS; Tersoff J; Haensch WE
    ACS Nano; 2015 Feb; 9(2):1936-44. PubMed ID: 25652208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radio frequency and linearity performance of transistors using high-purity semiconducting carbon nanotubes.
    Wang C; Badmaev A; Jooyaie A; Bao M; Wang KL; Galatsis K; Zhou C
    ACS Nano; 2011 May; 5(5):4169-76. PubMed ID: 21517104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-Temperature Side Contact to Carbon Nanotube Transistors: Resistance Distributions Down to 10 nm Contact Length.
    Pitner G; Hills G; Llinas JP; Persson KM; Park R; Bokor J; Mitra S; Wong HP
    Nano Lett; 2019 Feb; 19(2):1083-1089. PubMed ID: 30677297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-aligned T-gate high-purity semiconducting carbon nanotube RF transistors operated in quasi-ballistic transport and quantum capacitance regime.
    Che Y; Badmaev A; Jooyaie A; Wu T; Zhang J; Wang C; Galatsis K; Enaya HA; Zhou C
    ACS Nano; 2012 Aug; 6(8):6936-43. PubMed ID: 22768974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-performance partially aligned semiconductive single-walled carbon nanotube transistors achieved with a parallel technique.
    Wang Y; Pillai SK; Chan-Park MB
    Small; 2013 Sep; 9(17):2960-9. PubMed ID: 23441038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scalable complementary logic gates with chemically doped semiconducting carbon nanotube transistors.
    Lee SY; Lee SW; Kim SM; Yu WJ; Jo YW; Lee YH
    ACS Nano; 2011 Mar; 5(3):2369-75. PubMed ID: 21370895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radio Frequency Transistors Using Aligned Semiconducting Carbon Nanotubes with Current-Gain Cutoff Frequency and Maximum Oscillation Frequency Simultaneously Greater than 70 GHz.
    Cao Y; Brady GJ; Gui H; Rutherglen C; Arnold MS; Zhou C
    ACS Nano; 2016 Jul; 10(7):6782-90. PubMed ID: 27327074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyfluorene-sorted, carbon nanotube array field-effect transistors with increased current density and high on/off ratio.
    Brady GJ; Joo Y; Wu MY; Shea MJ; Gopalan P; Arnold MS
    ACS Nano; 2014 Nov; 8(11):11614-21. PubMed ID: 25383880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fundamental performance limits of carbon nanotube thin-film transistors achieved using hybrid molecular dielectrics.
    Sangwan VK; Ortiz RP; Alaboson JM; Emery JD; Bedzyk MJ; Lauhon LJ; Marks TJ; Hersam MC
    ACS Nano; 2012 Aug; 6(8):7480-8. PubMed ID: 22783918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MoS2 transistors with 1-nanometer gate lengths.
    Desai SB; Madhvapathy SR; Sachid AB; Llinas JP; Wang Q; Ahn GH; Pitner G; Kim MJ; Bokor J; Hu C; Wong HP; Javey A
    Science; 2016 Oct; 354(6308):99-102. PubMed ID: 27846499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock.
    Che Y; Wang C; Liu J; Liu B; Lin X; Parker J; Beasley C; Wong HS; Zhou C
    ACS Nano; 2012 Aug; 6(8):7454-62. PubMed ID: 22849386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.