These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 28663872)

  • 41. Combined Monte Carlo and finite-difference time-domain modeling for biophotonic analysis: implications on reflectance-based diagnosis of epithelial precancer.
    Kortun C; Hijazi YR; Arifler D
    J Biomed Opt; 2008; 13(3):034014. PubMed ID: 18601559
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Laser light scattering in turbid media Part II: Spatial and temporal analysis of individual scattering orders via Monte Carlo simulation.
    Berrocal E; Sedarsky DL; Paciaroni ME; Meglinski IV; Linne MA
    Opt Express; 2009 Aug; 17(16):13792-809. PubMed ID: 19654786
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Three Monte Carlo programs of polarized light transport into scattering media: part I.
    Ramella-Roman J; Prahl S; Jacques S
    Opt Express; 2005 Jun; 13(12):4420-38. PubMed ID: 19495358
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media.
    Liu Q; Ramanujam N
    J Opt Soc Am A Opt Image Sci Vis; 2007 Apr; 24(4):1011-25. PubMed ID: 17361287
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A table-based random sampling simulation for bioluminescence tomography.
    Zhang X; Bai J
    Int J Biomed Imaging; 2006; 2006():83820. PubMed ID: 23165050
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Accelerating mesh-based Monte Carlo method on modern CPU architectures.
    Fang Q; Kaeli DR
    Biomed Opt Express; 2012 Dec; 3(12):3223-30. PubMed ID: 23243572
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Light diffusion in N-layered turbid media: steady-state domain.
    Liemert A; Kienle A
    J Biomed Opt; 2010; 15(2):025003. PubMed ID: 20459244
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Limitations of the commonly used simplified laterally uniform optical fiber probe-tissue interface in Monte Carlo simulations of diffuse reflectance.
    Naglič P; Pernuš F; Likar B; Bürmen M
    Biomed Opt Express; 2015 Oct; 6(10):3973-88. PubMed ID: 26504647
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Light distribution modulated diffuse reflectance spectroscopy.
    Huang PY; Chien CY; Sheu CR; Chen YW; Tseng SH
    Biomed Opt Express; 2016 Jun; 7(6):2118-29. PubMed ID: 27375931
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Laser light scattering in turbid media Part I: Experimental and simulated results for the spatial intensity distribution.
    Berrocal E; Sedarsky DL; Paciaroni ME; Meglinski IV; Linne MA
    Opt Express; 2007 Aug; 15(17):10649-65. PubMed ID: 19547419
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Light transport in tissue: Accurate expressions for one-dimensional fluence rate and escape function based upon monte carlo simulation.
    Gardner CM; Jacques SL; Welch AJ
    Lasers Surg Med; 1996; 18(2):129-38. PubMed ID: 8833281
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Noninvasive determination of the optical properties of two-layered turbid media.
    Kienle A; Patterson MS; Dögnitz N; Bays R; Wagniνres G; van den Bergh H
    Appl Opt; 1998 Feb; 37(4):779-91. PubMed ID: 18268653
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Source of error in calculation of optical diffuse reflectance from turbid media using diffusion theory.
    Wang LV; Jacques SL
    Comput Methods Programs Biomed; 2000 Mar; 61(3):163-70. PubMed ID: 10710179
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Monte Carlo modeling of light propagation in highly scattering tissues--II: Comparison with measurements in phantoms.
    Flock ST; Wilson BC; Patterson MS
    IEEE Trans Biomed Eng; 1989 Dec; 36(12):1169-73. PubMed ID: 2606491
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Graphics processing units-accelerated adaptive nonlocal means filter for denoising three-dimensional Monte Carlo photon transport simulations.
    Yuan Y; Yu L; Doğan Z; Fang Q
    J Biomed Opt; 2018 Nov; 23(12):1-9. PubMed ID: 30499265
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Radiative transfer equation for predicting light propagation in biological media: comparison of a modified finite volume method, the Monte Carlo technique, and an exact analytical solution.
    Asllanaj F; Contassot-Vivier S; Liemert A; Kienle A
    J Biomed Opt; 2014 Jan; 19(1):15002. PubMed ID: 24390371
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth.
    Kanick SC; Robinson DJ; Sterenborg HJ; Amelink A
    Phys Med Biol; 2009 Nov; 54(22):6991-7008. PubMed ID: 19887712
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Angular reflectance of a highly forward scattering medium at grazing incidence of light.
    Marinyuk VV; Remizovich VS; Sheberstov SV
    J Opt Soc Am A Opt Image Sci Vis; 2020 Mar; 37(3):501-510. PubMed ID: 32118935
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Direct estimation of the reduced scattering coefficient from experimentally measured time-resolved reflectance via Monte Carlo based lookup tables.
    Helton M; Mycek MA; Vishwanath K
    Biomed Opt Express; 2020 Aug; 11(8):4366-4378. PubMed ID: 32923049
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electric field Monte Carlo simulations of focal field distributions produced by tightly focused laser beams in tissues.
    Hayakawa CK; Potma EO; Venugopalan V
    Biomed Opt Express; 2011 Jan; 2(2):278-90. PubMed ID: 21339874
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.