These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Deeply supervised 3D fully convolutional networks with group dilated convolution for automatic MRI prostate segmentation. Wang B; Lei Y; Tian S; Wang T; Liu Y; Patel P; Jani AB; Mao H; Curran WJ; Liu T; Yang X Med Phys; 2019 Apr; 46(4):1707-1718. PubMed ID: 30702759 [TBL] [Abstract][Full Text] [Related]
23. A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease. Liu M; Li F; Yan H; Wang K; Ma Y; ; Shen L; Xu M Neuroimage; 2020 Mar; 208():116459. PubMed ID: 31837471 [TBL] [Abstract][Full Text] [Related]
24. Clinical use of computed tomographic perfusion for the diagnosis and prediction of lesion growth in acute ischemic stroke. Huisa BN; Neil WP; Schrader R; Maya M; Pereira B; Bruce NT; Lyden PD J Stroke Cerebrovasc Dis; 2014 Jan; 23(1):114-22. PubMed ID: 23253533 [TBL] [Abstract][Full Text] [Related]
25. Deep Learning-Derived High-Level Neuroimaging Features Predict Clinical Outcomes for Large Vessel Occlusion. Nishi H; Oishi N; Ishii A; Ono I; Ogura T; Sunohara T; Chihara H; Fukumitsu R; Okawa M; Yamana N; Imamura H; Sadamasa N; Hatano T; Nakahara I; Sakai N; Miyamoto S Stroke; 2020 May; 51(5):1484-1492. PubMed ID: 32248769 [TBL] [Abstract][Full Text] [Related]
26. CNN-Res: deep learning framework for segmentation of acute ischemic stroke lesions on multimodal MRI images. Gheibi Y; Shirini K; Razavi SN; Farhoudi M; Samad-Soltani T BMC Med Inform Decis Mak; 2023 Sep; 23(1):192. PubMed ID: 37752508 [TBL] [Abstract][Full Text] [Related]
27. Automatic localization and segmentation of focal cortical dysplasia in FLAIR-negative patients using a convolutional neural network. Feng C; Zhao H; Li Y; Wen J J Appl Clin Med Phys; 2020 Sep; 21(9):215-226. PubMed ID: 32809276 [TBL] [Abstract][Full Text] [Related]
28. Deep-learning-based detection and segmentation of organs at risk in nasopharyngeal carcinoma computed tomographic images for radiotherapy planning. Liang S; Tang F; Huang X; Yang K; Zhong T; Hu R; Liu S; Yuan X; Zhang Y Eur Radiol; 2019 Apr; 29(4):1961-1967. PubMed ID: 30302589 [TBL] [Abstract][Full Text] [Related]
29. Automatic assessment of DWI-ASPECTS for acute ischemic stroke based on deep learning. Fang T; Jiang Z; Zhou Y; Jia S; Zhao J; Nie S Med Phys; 2024 Jun; 51(6):4351-4364. PubMed ID: 38687043 [TBL] [Abstract][Full Text] [Related]
31. Automatic segmentation and grading of ankylosing spondylitis on MR images via lightweight hybrid multi-scale convolutional neural network with reinforcement learning. Gou S; Lu Y; Tong N; Huang L; Liu N; Han Q Phys Med Biol; 2021 Oct; 66(20):. PubMed ID: 34517352 [No Abstract] [Full Text] [Related]
32. A fully convolutional neural network for new T2-w lesion detection in multiple sclerosis. Salem M; Valverde S; Cabezas M; Pareto D; Oliver A; Salvi J; Rovira À; Lladó X Neuroimage Clin; 2020; 25():102149. PubMed ID: 31918065 [TBL] [Abstract][Full Text] [Related]
33. Penumbra quantification from MR SWI-DWI mismatch and its comparison with MR ASL PWI-DWI mismatch in patients with acute ischemic stroke. Bhattacharjee R; Gupta RK; Das B; Dixit VK; Gupta P; Singh A NMR Biomed; 2021 Jul; 34(7):e4526. PubMed ID: 33880799 [TBL] [Abstract][Full Text] [Related]
34. Automatic post-stroke lesion segmentation on MR images using 3D residual convolutional neural network. Tomita N; Jiang S; Maeder ME; Hassanpour S Neuroimage Clin; 2020; 27():102276. PubMed ID: 32512401 [TBL] [Abstract][Full Text] [Related]
35. Deep convolutional neural networks for automated segmentation of brain metastases trained on clinical data. Bousabarah K; Ruge M; Brand JS; Hoevels M; Rueß D; Borggrefe J; Große Hokamp N; Visser-Vandewalle V; Maintz D; Treuer H; Kocher M Radiat Oncol; 2020 Apr; 15(1):87. PubMed ID: 32312276 [TBL] [Abstract][Full Text] [Related]
36. Attention convolutional neural network for accurate segmentation and quantification of lesions in ischemic stroke disease. Liu L; Kurgan L; Wu FX; Wang J Med Image Anal; 2020 Oct; 65():101791. PubMed ID: 32712525 [TBL] [Abstract][Full Text] [Related]
37. Deep learning for fully automated tumor segmentation and extraction of magnetic resonance radiomics features in cervical cancer. Lin YC; Lin CH; Lu HY; Chiang HJ; Wang HK; Huang YT; Ng SH; Hong JH; Yen TC; Lai CH; Lin G Eur Radiol; 2020 Mar; 30(3):1297-1305. PubMed ID: 31712961 [TBL] [Abstract][Full Text] [Related]
38. Automatic brain extraction and hemisphere segmentation in rat brain MR images after stroke using deformable models. Chang HH; Yeh SJ; Chiang MC; Hsieh ST Med Phys; 2021 Oct; 48(10):6036-6050. PubMed ID: 34388268 [TBL] [Abstract][Full Text] [Related]
39. Detection and vascular territorial classification of stroke on diffusion-weighted MRI by deep learning. Cetinoglu YK; Koska IO; Uluc ME; Gelal MF Eur J Radiol; 2021 Dec; 145():110050. PubMed ID: 34839210 [TBL] [Abstract][Full Text] [Related]
40. Improvement of automatic ischemic stroke lesion segmentation in CT perfusion maps using a learned deep neural network. Soltanpour M; Greiner R; Boulanger P; Buck B Comput Biol Med; 2021 Oct; 137():104849. PubMed ID: 34530336 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]