These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 28664564)

  • 1. Clustering high-dimensional mixed data to uncover sub-phenotypes: joint analysis of phenotypic and genotypic data.
    McParland D; Phillips CM; Brennan L; Roche HM; Gormley IC
    Stat Med; 2017 Dec; 36(28):4548-4569. PubMed ID: 28664564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bayesian Variable Selection in Multilevel Item Response Theory Models with Application in Genomics.
    Fragoso TM; de Andrade M; Pereira AC; Rosa GJ; Soler JM
    Genet Epidemiol; 2016 Apr; 40(3):253-63. PubMed ID: 27027518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping multiple quantitative trait Loci for ordinal traits.
    Yi N; Xu S; George V; Allison DB
    Behav Genet; 2004 Jan; 34(1):3-15. PubMed ID: 14739693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bayesian variable and model selection methods for genetic association studies.
    Fridley BL
    Genet Epidemiol; 2009 Jan; 33(1):27-37. PubMed ID: 18618760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Dirichlet process mixture model for clustering longitudinal gene expression data.
    Sun J; Herazo-Maya JD; Kaminski N; Zhao H; Warren JL
    Stat Med; 2017 Sep; 36(22):3495-3506. PubMed ID: 28620908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dietary saturated fat, gender and genetic variation at the TCF7L2 locus predict the development of metabolic syndrome.
    Phillips CM; Goumidi L; Bertrais S; Field MR; McManus R; Hercberg S; Lairon D; Planells R; Roche HM
    J Nutr Biochem; 2012 Mar; 23(3):239-44. PubMed ID: 21543200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct analysis of unphased SNP genotype data in population-based association studies via Bayesian partition modelling of haplotypes.
    Morris AP
    Genet Epidemiol; 2005 Sep; 29(2):91-107. PubMed ID: 15940704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissecting trait heterogeneity: a comparison of three clustering methods applied to genotypic data.
    Thornton-Wells TA; Moore JH; Haines JL
    BMC Bioinformatics; 2006 Apr; 7():204. PubMed ID: 16611359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using item response theory to model multiple phenotypes and their joint heritability in family data.
    Fragoso TM; Giolo SR; Pereira AC; de Andrade M; Soler JM
    Genet Epidemiol; 2014 Feb; 38(2):152-61. PubMed ID: 24415554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetics of metabolic syndrome: is there a role for phenomics?
    Joy T; Hegele RA
    Curr Atheroscler Rep; 2008 Jun; 10(3):201-8. PubMed ID: 18489847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fast algorithm for Bayesian multi-locus model in genome-wide association studies.
    Duan W; Zhao Y; Wei Y; Yang S; Bai J; Shen S; Du M; Huang L; Hu Z; Chen F
    Mol Genet Genomics; 2017 Aug; 292(4):923-934. PubMed ID: 28534238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Bayesian model for detection of high-order interactions among genetic variants in genome-wide association studies.
    Wang J; Joshi T; Valliyodan B; Shi H; Liang Y; Nguyen HT; Zhang J; Xu D
    BMC Genomics; 2015 Nov; 16():1011. PubMed ID: 26607428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A latent class distance association model for cross-classified data with a categorical response variable.
    Vera JF; de Rooij M; Heiser WJ
    Br J Math Stat Psychol; 2014 Nov; 67(3):514-40. PubMed ID: 24661132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic Spectroscopic Data Categorization by Clustering Analysis (ASCLAN): A Data-Driven Approach for Distinguishing Discriminatory Metabolites for Phenotypic Subclasses.
    Zou X; Holmes E; Nicholson JK; Loo RL
    Anal Chem; 2016 Jun; 88(11):5670-9. PubMed ID: 27149575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Bayesian approach to restricted latent class models for scientifically structured clustering of multivariate binary outcomes.
    Wu Z; Casciola-Rosen L; Rosen A; Zeger SL
    Biometrics; 2021 Dec; 77(4):1431-1444. PubMed ID: 33031597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Joint high-dimensional Bayesian variable and covariance selection with an application to eQTL analysis.
    Bhadra A; Mallick BK
    Biometrics; 2013 Jun; 69(2):447-57. PubMed ID: 23607608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous clustering of gene expression data with clinical chemistry and pathological evaluations reveals phenotypic prototypes.
    Bushel PR; Wolfinger RD; Gibson G
    BMC Syst Biol; 2007 Feb; 1():15. PubMed ID: 17408499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variance components analysis for pedigree-based censored survival data using generalized linear mixed models (GLMMs) and Gibbs sampling in BUGS.
    Scurrah KJ; Palmer LJ; Burton PR
    Genet Epidemiol; 2000 Sep; 19(2):127-48. PubMed ID: 10962474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Bayesian clustering approach for detecting gene-gene interactions in high-dimensional genotype data.
    Chen SP; Huang GH
    Stat Appl Genet Mol Biol; 2014 Jun; 13(3):275-97. PubMed ID: 24846958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A sparse factor model for clustering high-dimensional longitudinal data.
    Lu Z; Chandra NK
    Stat Med; 2024 Aug; 43(19):3633-3648. PubMed ID: 38885953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.