BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 28664598)

  • 41. A comprehensive CHO SWATH-MS spectral library for robust quantitative profiling of 10,000 proteins.
    Sim KH; Liu LC; Tan HT; Tan K; Ng D; Zhang W; Yang Y; Tate S; Bi X
    Sci Data; 2020 Aug; 7(1):263. PubMed ID: 32782267
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Leveraging homologies for cross-species plasma proteomics in ungulates using data-independent acquisition.
    Noor Z; Paramasivan S; Ghodasara P; Chemonges S; Gupta R; Kopp S; Mills PC; Ranganathan S; Satake N; Sadowski P
    J Proteomics; 2022 Jan; 250():104384. PubMed ID: 34601153
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Data Analysis Protocol for Quantitative Data-Independent Acquisition Proteomics.
    Pietilä S; Suomi T; Aakko J; Elo LL
    Methods Mol Biol; 2019; 1871():455-465. PubMed ID: 30276755
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Systematic evaluation of data-independent acquisition for sensitive and reproducible proteomics-a prototype design for a single injection assay.
    Heaven MR; Funk AJ; Cobbs AL; Haffey WD; Norris JL; McCullumsmith RE; Greis KD
    J Mass Spectrom; 2016 Jan; 51(1):1-11. PubMed ID: 26757066
    [TBL] [Abstract][Full Text] [Related]  

  • 45. DIALib-QC an assessment tool for spectral libraries in data-independent acquisition proteomics.
    Midha MK; Campbell DS; Kapil C; Kusebauch U; Hoopmann MR; Bader SL; Moritz RL
    Nat Commun; 2020 Oct; 11(1):5251. PubMed ID: 33067471
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Generation of HLA Allele-Specific Spectral Libraries to Identify and Quantify Immunopeptidomes by SWATH/DIA-MS.
    Kovalchik K; Hamelin D; Caron E
    Methods Mol Biol; 2022; 2420():137-147. PubMed ID: 34905171
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Automated SWATH Data Analysis Using Targeted Extraction of Ion Chromatograms.
    Röst HL; Aebersold R; Schubert OT
    Methods Mol Biol; 2017; 1550():289-307. PubMed ID: 28188537
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pseudo isobaric peptide termini labelling for relative proteome quantification by SWATH MS acquisition.
    Zhang S; Chen L; Shan Y; Sui Z; Wu Q; Zhang L; Liang Z; Zhang Y
    Analyst; 2016 Aug; 141(16):4912-8. PubMed ID: 27328449
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Data-Independent Acquisition for the Quantification and Identification of Metabolites in Plasma.
    van der Laan T; Boom I; Maliepaard J; Dubbelman AC; Harms AC; Hankemeier T
    Metabolites; 2020 Dec; 10(12):. PubMed ID: 33353236
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Online Peptide fractionation using a multiphasic microfluidic liquid chromatography chip improves reproducibility and detection limits for quantitation in discovery and targeted proteomics.
    Krisp C; Yang H; van Soest R; Molloy MP
    Mol Cell Proteomics; 2015 Jun; 14(6):1708-19. PubMed ID: 25850434
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A multicenter study benchmarks software tools for label-free proteome quantification.
    Navarro P; Kuharev J; Gillet LC; Bernhardt OM; MacLean B; Röst HL; Tate SA; Tsou CC; Reiter L; Distler U; Rosenberger G; Perez-Riverol Y; Nesvizhskii AI; Aebersold R; Tenzer S
    Nat Biotechnol; 2016 Nov; 34(11):1130-1136. PubMed ID: 27701404
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Improving SWATH-MS analysis by deep-learning.
    Sun B; Smialowski P; Aftab W; Schmidt A; Forne I; Straub T; Imhof A
    Proteomics; 2023 May; 23(9):e2200179. PubMed ID: 36571325
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantitative measurements of N-linked glycoproteins in human plasma by SWATH-MS.
    Liu Y; Hüttenhain R; Surinova S; Gillet LC; Mouritsen J; Brunner R; Navarro P; Aebersold R
    Proteomics; 2013 Apr; 13(8):1247-56. PubMed ID: 23322582
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of two-dimensional fractionation techniques for shotgun proteomics.
    Dowell JA; Frost DC; Zhang J; Li L
    Anal Chem; 2008 Sep; 80(17):6715-23. PubMed ID: 18680313
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multiplex and Label-Free Relative Quantification Approach for Studying Protein Abundance of Drug Metabolizing Enzymes in Human Liver Microsomes Using SWATH-MS.
    Jamwal R; Barlock BJ; Adusumalli S; Ogasawara K; Simons BL; Akhlaghi F
    J Proteome Res; 2017 Nov; 16(11):4134-4143. PubMed ID: 28944677
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comprehensive proteomics in yeast using chromatographic fractionation, gas phase fractionation, protein gel electrophoresis, and isoelectric focusing.
    Breci L; Hattrup E; Keeler M; Letarte J; Johnson R; Haynes PA
    Proteomics; 2005 May; 5(8):2018-28. PubMed ID: 15852344
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A primary human T-cell spectral library to facilitate large scale quantitative T-cell proteomics.
    Weerakoon H; Potriquet J; Shah AK; Reed S; Jayakody B; Kapil C; Midha MK; Moritz RL; Lepletier A; Mulvenna J; Miles JJ; Hill MM
    Sci Data; 2020 Nov; 7(1):412. PubMed ID: 33230158
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluation of Urinary Proteome Library Generation Methods on Data-Independent Acquisition MS Analysis and its Application in Normal Urinary Proteome Analysis.
    Zhao M; Liu X; Sun H; Guo Z; Liu X; Sun W
    Proteomics Clin Appl; 2019 Sep; 13(5):e1800152. PubMed ID: 31017348
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evaluation of sample extraction methods for proteomics analysis of green algae Chlorella vulgaris.
    Gao Y; Lim TK; Lin Q; Li SF
    Electrophoresis; 2016 May; 37(10):1270-6. PubMed ID: 26935773
    [TBL] [Abstract][Full Text] [Related]  

  • 60. BoxCar and Library-Free Data-Independent Acquisition Substantially Improve the Depth, Range, and Completeness of Label-Free Quantitative Proteomics.
    Mehta D; Scandola S; Uhrig RG
    Anal Chem; 2022 Jan; 94(2):793-802. PubMed ID: 34978796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.