These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 28664662)

  • 1. Functional joint model for longitudinal and time-to-event data: an application to Alzheimer's disease.
    Li K; Luo S
    Stat Med; 2017 Sep; 36(22):3560-3572. PubMed ID: 28664662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic predictions in Bayesian functional joint models for longitudinal and time-to-event data: An application to Alzheimer's disease.
    Li K; Luo S
    Stat Methods Med Res; 2019 Feb; 28(2):327-342. PubMed ID: 28750578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian Functional Joint Models for Multivariate Longitudinal and Time-to-Event Data.
    Li K; Luo S
    Comput Stat Data Anal; 2019 Jan; 129():14-29. PubMed ID: 30559575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic prediction of Alzheimer's disease progression using features of multiple longitudinal outcomes and time-to-event data.
    Li K; Luo S
    Stat Med; 2019 Oct; 38(24):4804-4818. PubMed ID: 31386218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partial least squares for functional joint models with applications to the Alzheimer's disease neuroimaging initiative study.
    Wang Y; Ibrahim JG; Zhu H
    Biometrics; 2020 Dec; 76(4):1109-1119. PubMed ID: 32010968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hierarchical independent component analysis model for longitudinal neuroimaging studies.
    Wang Y; Guo Y
    Neuroimage; 2019 Apr; 189():380-400. PubMed ID: 30639837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Joint model for survival and multivariate sparse functional data with application to a study of Alzheimer's Disease.
    Li C; Xiao L; Luo S
    Biometrics; 2022 Jun; 78(2):435-447. PubMed ID: 33501651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factor-augmented transformation models for interval-censored failure time data.
    Li H; Li S; Sun L; Song X
    Biometrics; 2024 Jul; 80(3):. PubMed ID: 39177025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FLCRM: Functional linear cox regression model.
    Kong D; Ibrahim JG; Lee E; Zhu H
    Biometrics; 2018 Mar; 74(1):109-117. PubMed ID: 28863246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Longitudinal quantile regression in the presence of informative dropout through longitudinal-survival joint modeling.
    Farcomeni A; Viviani S
    Stat Med; 2015 Mar; 34(7):1199-213. PubMed ID: 25488110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional survival forests for multivariate longitudinal outcomes: Dynamic prediction of Alzheimer's disease progression.
    Lin J; Li K; Luo S
    Stat Methods Med Res; 2021 Jan; 30(1):99-111. PubMed ID: 32726189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bayesian inference and dynamic prediction of multivariate joint model with functional data: An application to Alzheimer's disease.
    Zou H; Li K; Zeng D; Luo S;
    Stat Med; 2021 Dec; 40(30):6855-6872. PubMed ID: 34649301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constructing longitudinal disease progression curves using sparse, short-term individual data with an application to Alzheimer's disease.
    Budgeon CA; Murray K; Turlach BA; Baker S; Villemagne VL; Burnham SC;
    Stat Med; 2017 Jul; 36(17):2720-2734. PubMed ID: 28444781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Copula Approach to Joint Modeling of Longitudinal Measurements and Survival Times Using Monte Carlo Expectation-Maximization with Application to AIDS Studies.
    Ganjali M; Baghfalaki T
    J Biopharm Stat; 2015; 25(5):1077-99. PubMed ID: 25372017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extending the code in the open-source saemix package to fit joint models of longitudinal and time-to-event data.
    Lavalley-Morelle A; Mentré F; Comets E; Mullaert J
    Comput Methods Programs Biomed; 2024 Apr; 247():108095. PubMed ID: 38422892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antedependence models for nonstationary categorical longitudinal data with ignorable missingness: likelihood-based inference.
    Xie Y; Zimmerman DL
    Stat Med; 2013 Aug; 32(19):3274-89. PubMed ID: 23436682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Jointly modeling the relationship between longitudinal and survival data subject to left truncation with applications to cystic fibrosis.
    Piccorelli AV; Schluchter MD
    Stat Med; 2012 Dec; 31(29):3931-45. PubMed ID: 22786556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asynchronous functional linear regression models for longitudinal data in reproducing kernel Hilbert space.
    Li T; Zhu H; Li T; Zhu H
    Biometrics; 2023 Sep; 79(3):1880-1895. PubMed ID: 36205584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Joint modeling of repeated multivariate cognitive measures and competing risks of dementia and death: a latent process and latent class approach.
    Proust-Lima C; Dartigues JF; Jacqmin-Gadda H
    Stat Med; 2016 Feb; 35(3):382-98. PubMed ID: 26376900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. STGP: Spatio-temporal Gaussian process models for longitudinal neuroimaging data.
    Hyun JW; Li Y; Huang C; Styner M; Lin W; Zhu H;
    Neuroimage; 2016 Jul; 134():550-562. PubMed ID: 27103140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.