These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 28664734)

  • 21. The dimerization domain in DapE enzymes is required for catalysis.
    Nocek B; Starus A; Makowska-Grzyska M; Gutierrez B; Sanchez S; Jedrzejczak R; Mack JC; Olsen KW; Joachimiak A; Holz RC
    PLoS One; 2014; 9(5):e93593. PubMed ID: 24806882
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Probing the active site chemistry of β-glucosidases along the hydrolysis reaction pathway.
    Badieyan S; Bevan DR; Zhang C
    Biochemistry; 2012 Nov; 51(44):8907-18. PubMed ID: 23043218
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Theoretical perspectives on the reaction mechanism of serine proteases: the reaction free energy profiles of the acylation process.
    Ishida T; Kato S
    J Am Chem Soc; 2003 Oct; 125(39):12035-48. PubMed ID: 14505425
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Elucidation of the Catalytic Mechanism of a Miniature Zinc Finger Hydrolase.
    Ganguly A; Luong TQ; Brylski O; Dirkmann M; Möller D; Ebbinghaus S; Schulz F; Winter R; Sanchez-Garcia E; Thiel W
    J Phys Chem B; 2017 Jul; 121(26):6390-6398. PubMed ID: 28648071
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular modeling and QM/MM calculation clarify the catalytic mechanism of β-lactamase N1.
    Yu Y; Wang X; Gao Y; Yang Y; Sun L; Wang G; Deng X; Niu X
    J Mol Model; 2019 Apr; 25(5):118. PubMed ID: 30982150
    [TBL] [Abstract][Full Text] [Related]  

  • 26. QM/MM Molecular Dynamics Simulations Revealed Catalytic Mechanism of Urease.
    Saito T; Takano Y
    J Phys Chem B; 2022 Mar; 126(10):2087-2097. PubMed ID: 35238572
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determinants of reactivity and selectivity in soluble epoxide hydrolase from quantum mechanics/molecular mechanics modeling.
    Lonsdale R; Hoyle S; Grey DT; Ridder L; Mulholland AJ
    Biochemistry; 2012 Feb; 51(8):1774-86. PubMed ID: 22280021
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Carbinolamine formation and dehydration in a DNA repair enzyme active site.
    Dodson ML; Walker RC; Lloyd RS
    PLoS One; 2012; 7(2):e31377. PubMed ID: 22384015
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simulating Protein Mediated Hydrolysis of ATP and Other Nucleoside Triphosphates by Combining QM/MM Molecular Dynamics with Advances in Metadynamics.
    Sun R; Sode O; Dama JF; Voth GA
    J Chem Theory Comput; 2017 May; 13(5):2332-2341. PubMed ID: 28345907
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Model Setup and Procedures for Prediction of Enzyme Reaction Kinetics with QM-Only and QM:MM Approaches.
    Glanowski M; Kachhap S; Borowski T; Szaleniec M
    Methods Mol Biol; 2022; 2385():175-236. PubMed ID: 34888722
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Catalytic mechanism and product specificity of rubisco large subunit methyltransferase: QM/MM and MD investigations.
    Zhang X; Bruice TC
    Biochemistry; 2007 May; 46(18):5505-14. PubMed ID: 17429949
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploring PfDHFR reaction surface: A combined molecular dynamics and QM/MM analysis.
    Abbat S; Jaladanki CK; Bharatam PV
    J Mol Graph Model; 2019 Mar; 87():76-88. PubMed ID: 30508692
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reaction pathway and free energy profile for papain-catalyzed hydrolysis of N-acetyl-Phe-Gly 4-nitroanilide.
    Wei D; Huang X; Liu J; Tang M; Zhan CG
    Biochemistry; 2013 Jul; 52(30):5145-54. PubMed ID: 23862626
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A mechanistic study of Trichoderma reesei Cel7B catalyzed glycosidic bond cleavage.
    Zhang Y; Yan S; Yao L
    J Phys Chem B; 2013 Jul; 117(29):8714-22. PubMed ID: 23822607
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular dynamics explorations of active site structure in designed and evolved enzymes.
    Osuna S; Jiménez-Osés G; Noey EL; Houk KN
    Acc Chem Res; 2015 Apr; 48(4):1080-9. PubMed ID: 25738880
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Promiscuity in alkaline phosphatase superfamily. Unraveling evolution through molecular simulations.
    López-Canut V; Roca M; Bertrán J; Moliner V; Tuñón I
    J Am Chem Soc; 2011 Aug; 133(31):12050-62. PubMed ID: 21609015
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the Catalytic Activity of the Engineered Coiled-Coil Heptamer Mimicking the Hydrolase Enzymes: Insights from a Computational Study.
    Prejanò M; Romeo I; Russo N; Marino T
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32604744
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insight into the phosphodiesterase mechanism from combined QM/MM free energy simulations.
    Wong KY; Gao J
    FEBS J; 2011 Jul; 278(14):2579-95. PubMed ID: 21595828
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In silico approach towards identification of potential inhibitors of Helicobacter pylori DapE.
    Mandal RS; Das S
    J Biomol Struct Dyn; 2015; 33(7):1460-73. PubMed ID: 25204745
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metal-ion promiscuity of microbial enzyme DapE at its second metal-binding site.
    Paul A; Mishra S
    J Biol Inorg Chem; 2021 Aug; 26(5):569-582. PubMed ID: 34241683
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.