These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 28664875)

  • 1. Surface potential modeling and reconstruction in Kelvin probe force microscopy.
    Xu J; Wu Y; Li W; Xu J
    Nanotechnology; 2017 Sep; 28(36):365705. PubMed ID: 28664875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pulsed Force Kelvin Probe Force Microscopy.
    Jakob DS; Wang H; Xu XG
    ACS Nano; 2020 Apr; 14(4):4839-4848. PubMed ID: 32283008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The stray capacitance effect in Kelvin probe force microscopy using FM, AM and heterodyne AM modes.
    Ma ZM; Kou L; Naitoh Y; Li YJ; Sugawara Y
    Nanotechnology; 2013 Jun; 24(22):225701. PubMed ID: 23633495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Full data acquisition in Kelvin Probe Force Microscopy: Mapping dynamic electric phenomena in real space.
    Collins L; Belianinov A; Somnath S; Balke N; Kalinin SV; Jesse S
    Sci Rep; 2016 Aug; 6():30557. PubMed ID: 27514987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstruction of surface potential from Kelvin probe force microscopy images.
    Cohen G; Halpern E; Nanayakkara SU; Luther JM; Held C; Bennewitz R; Boag A; Rosenwaks Y
    Nanotechnology; 2013 Jul; 24(29):295702. PubMed ID: 23807266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale quantitative measurement of the potential of charged nanostructures by electrostatic and Kelvin probe force microscopy: unraveling electronic processes in complex materials.
    Liscio A; Palermo V; Samorì P
    Acc Chem Res; 2010 Apr; 43(4):541-50. PubMed ID: 20058907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative 3D-KPFM imaging with simultaneous electrostatic force and force gradient detection.
    Collins L; Okatan MB; Li Q; Kravenchenko II; Lavrik NV; Kalinin SV; Rodriguez BJ; Jesse S
    Nanotechnology; 2015 May; 26(17):175707. PubMed ID: 25851168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excluding Contact Electrification in Surface Potential Measurement Using Kelvin Probe Force Microscopy.
    Li S; Zhou Y; Zi Y; Zhang G; Wang ZL
    ACS Nano; 2016 Feb; 10(2):2528-35. PubMed ID: 26824304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an improved Kelvin probe force microscope for accurate local potential measurements on biased electronic devices.
    Bercu NB; Giraudet L; Simonetti O; Molinari M
    J Microsc; 2017 Sep; 267(3):272-279. PubMed ID: 28394454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Know your full potential: Quantitative Kelvin probe force microscopy on nanoscale electrical devices.
    Axt A; Hermes IM; Bergmann VW; Tausendpfund N; Weber SAL
    Beilstein J Nanotechnol; 2018; 9():1809-1819. PubMed ID: 29977714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the relevance of the atomic-scale contact potential difference by amplitude-modulation and frequency-modulation Kelvin probe force microscopy.
    Nony L; Bocquet F; Loppacher C; Glatzel T
    Nanotechnology; 2009 Jul; 20(26):264014. PubMed ID: 19509441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical simulation of Kelvin probe force microscopy for Si surfaces by taking account of chemical forces.
    Tsukada M; Masago A; Shimizu M
    J Phys Condens Matter; 2012 Feb; 24(8):084002. PubMed ID: 22309993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface potential imaging with atomic resolution by frequency-modulation Kelvin probe force microscopy without bias voltage feedback.
    Kou L; Ma Z; Li YJ; Naitoh Y; Komiyama M; Sugawara Y
    Nanotechnology; 2015 May; 26(19):195701. PubMed ID: 25895740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High spatial resolution Kelvin probe force microscopy with coaxial probes.
    Brown KA; Satzinger KJ; Westervelt RM
    Nanotechnology; 2012 Mar; 23(11):115703. PubMed ID: 22369870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microscopic and macroscopic characterization of the charging effects in SiC/Si nanocrystals/SiC sandwiched structures.
    Xu J; Xu J; Wang Y; Cao Y; Li W; Yu L; Chen K
    Nanotechnology; 2014 Feb; 25(5):055703. PubMed ID: 24406450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated Tapping Mode Kelvin Probe Force Microscopy with Photoinduced Force Microscopy for Correlative Chemical and Surface Potential Mapping.
    Jakob DS; Li N; Zhou H; Xu XG
    Small; 2021 Sep; 17(37):e2102495. PubMed ID: 34310045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unraveling Spatiotemporal Transient Dynamics at the Nanoscale via Wavelet Transform-Based Kelvin Probe Force Microscopy.
    Biglarbeigi P; Morelli A; Pauly S; Yu Z; Jiang W; Sharma S; Finlay D; Kumar A; Soin N; Payam AF
    ACS Nano; 2023 Nov; 17(21):21506-21517. PubMed ID: 37877266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Open loop Kelvin probe force microscopy with single and multi-frequency excitation.
    Collins L; Kilpatrick JI; Weber SA; Tselev A; Vlassiouk IV; Ivanov IN; Jesse S; Kalinin SV; Rodriguez BJ
    Nanotechnology; 2013 Nov; 24(47):475702. PubMed ID: 24176878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The importance of cantilever dynamics in the interpretation of Kelvin probe force microscopy.
    Satzinger KJ; Brown KA; Westervelt RM
    J Appl Phys; 2012 Sep; 112(6):64510. PubMed ID: 23093809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstruction of Kelvin probe force microscopy image with experimentally calibrated point spread function.
    Lan F; Jiang M; Tao Q; Wei F; Li G
    Rev Sci Instrum; 2017 Mar; 88(3):033704. PubMed ID: 28372383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.