These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 28665040)

  • 21. Widespread recruitment of ancient domain structures in modern enzymes during metabolic evolution.
    Kim HS; Mittenthal JE; Caetano-Anollés G
    J Integr Bioinform; 2013 Feb; 10(1):214. PubMed ID: 23406778
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The lifestyle of prokaryotic organisms influences the repertoire of promiscuous enzymes.
    Martínez-Núñez MA; Rodríguez-Vázquez K; Pérez-Rueda E
    Proteins; 2015 Sep; 83(9):1625-31. PubMed ID: 26109005
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemical and genomic evolution of enzyme-catalyzed reaction networks.
    Kanehisa M
    FEBS Lett; 2013 Sep; 587(17):2731-7. PubMed ID: 23816707
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Origins of specificity and promiscuity in metabolic networks.
    Carbonell P; Lecointre G; Faulon JL
    J Biol Chem; 2011 Dec; 286(51):43994-44004. PubMed ID: 22052908
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Universal scaling across biochemical networks on Earth.
    Kim H; Smith HB; Mathis C; Raymond J; Walker SI
    Sci Adv; 2019 Jan; 5(1):eaau0149. PubMed ID: 30746442
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic networks and their evolution.
    Wagner A
    Adv Exp Med Biol; 2012; 751():29-52. PubMed ID: 22821452
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling the complex dynamics of enzyme-pathway coevolution.
    Schütte M; Skupin A; Segrè D; Ebenhöh O
    Chaos; 2010 Dec; 20(4):045115. PubMed ID: 21198127
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Bird's-Eye View of Enzyme Evolution: Chemical, Physicochemical, and Physiological Considerations.
    Davidi D; Longo LM; Jabłońska J; Milo R; Tawfik DS
    Chem Rev; 2018 Sep; 118(18):8786-8797. PubMed ID: 30133258
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rapid bursts and slow declines: on the possible evolutionary trajectories of enzymes.
    Newton MS; Arcus VL; Patrick WM
    J R Soc Interface; 2015 Jun; 12(107):. PubMed ID: 25926697
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolution of biological catalysis: ribozyme to RNP enzyme.
    Cech TR
    Cold Spring Harb Symp Quant Biol; 2009; 74():11-6. PubMed ID: 19850851
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enzyme evolution: innovation is easy, optimization is complicated.
    Newton MS; Arcus VL; Gerth ML; Patrick WM
    Curr Opin Struct Biol; 2018 Feb; 48():110-116. PubMed ID: 29207314
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Connectivity between catalytic landscapes of the metallo-β-lactamase superfamily.
    Baier F; Tokuriki N
    J Mol Biol; 2014 Jun; 426(13):2442-56. PubMed ID: 24769192
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The remarkable pliability and promiscuity of specialized metabolism.
    Weng JK; Noel JP
    Cold Spring Harb Symp Quant Biol; 2012; 77():309-20. PubMed ID: 23269558
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints.
    Chakrabarti A; Miskovic L; Soh KC; Hatzimanikatis V
    Biotechnol J; 2013 Sep; 8(9):1043-57. PubMed ID: 23868566
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential effects of a mutation on the normal and promiscuous activities of orthologs: implications for natural and directed evolution.
    Khanal A; Yu McLoughlin S; Kershner JP; Copley SD
    Mol Biol Evol; 2015 Jan; 32(1):100-8. PubMed ID: 25246702
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolutionary expansion of the amidohydrolase superfamily in bacteria in response to the synthetic compounds molinate and diuron.
    Sugrue E; Fraser NJ; Hopkins DH; Carr PD; Khurana JL; Oakeshott JG; Scott C; Jackson CJ
    Appl Environ Microbiol; 2015 Apr; 81(7):2612-24. PubMed ID: 25636851
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Promiscuity of Exiguobacterium sp. AT1b o-succinylbenzoate synthase illustrates evolutionary transitions in the OSBS family.
    Brizendine AM; Odokonyero D; McMillan AW; Zhu M; Hull K; Romo D; Glasner ME
    Biochem Biophys Res Commun; 2014 Jul; 450(1):679-84. PubMed ID: 24937446
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Catalytic promiscuity and the evolution of new enzymatic activities.
    O'Brien PJ; Herschlag D
    Chem Biol; 1999 Apr; 6(4):R91-R105. PubMed ID: 10099128
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolution of catalytic proteins or on the origin of enzyme species by means of natural selection.
    Kacser H; Beeby R
    J Mol Evol; 1984; 20(1):38-51. PubMed ID: 6429341
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Underground metabolism: network-level perspective and biotechnological potential.
    Notebaart RA; Kintses B; Feist AM; Papp B
    Curr Opin Biotechnol; 2018 Feb; 49():108-114. PubMed ID: 28837944
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.