These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 28665315)

  • 41. Myc, mondo, and metabolism.
    Sloan EJ; Ayer DE
    Genes Cancer; 2010 Jun; 1(6):587-96. PubMed ID: 21113411
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Immune evasion: An imperative and consequence of MYC deregulation.
    Krenz B; Lee J; Kannan T; Eilers M
    Mol Oncol; 2024 Jul; ():. PubMed ID: 38957016
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Emerging Concepts in the Analysis of Transcriptional Targets of the MYC Oncoprotein: Are the Targets Targetable?
    Van Dang C; McMahon SB
    Genes Cancer; 2010 Jun; 1(6):560-567. PubMed ID: 21533016
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Myc beyond Cancer: Regulation of Mammalian Tissue Regeneration.
    Illi B; Nasi S
    Pathophysiology; 2023 Aug; 30(3):346-365. PubMed ID: 37606389
    [TBL] [Abstract][Full Text] [Related]  

  • 45. MYC: there is more to it than cancer.
    Zacarías-Fluck MF; Soucek L; Whitfield JR
    Front Cell Dev Biol; 2024; 12():1342872. PubMed ID: 38510176
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genetic systems to investigate regulation of oncogenes and tumour suppressor genes in Drosophila.
    Lee JE; Cranna NJ; Chahal AS; Quinn LM
    Cells; 2012 Dec; 1(4):1182-96. PubMed ID: 24710550
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Editorial Expression of Concern: Dynamic in vivo interactions among Myc network members.
    Yin XY; Landay MF; Han W; Levitan ES; Watkins SC; Levenson RM; Farkas DL; Prochownik EV
    Oncogene; 2021 Nov; 40(44):6308. PubMed ID: 34326468
    [No Abstract]   [Full Text] [Related]  

  • 48. Lysine-52 stabilizes the MYC oncoprotein through an SCF
    De Melo J; Kim SS; Lourenco C; Penn LZ
    Oncogene; 2017 Dec; 36(49):6815-6822. PubMed ID: 28806398
    [TBL] [Abstract][Full Text] [Related]  

  • 49. lncRNAs and MYC: An Intricate Relationship.
    Iaccarino I
    Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28704924
    [TBL] [Abstract][Full Text] [Related]  

  • 50. p27
    Bencivenga D; Caldarelli I; Stampone E; Mancini FP; Balestrieri ML; Della Ragione F; Borriello A
    Cancer Lett; 2017 Sep; 403():354-365. PubMed ID: 28687353
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Myc stimulates cell cycle progression through the activation of Cdk1 and phosphorylation of p27.
    García-Gutiérrez L; Bretones G; Molina E; Arechaga I; Symonds C; Acosta JC; Blanco R; Fernández A; Alonso L; Sicinski P; Barbacid M; Santamaría D; León J
    Sci Rep; 2019 Dec; 9(1):18693. PubMed ID: 31822694
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multiple functions of p27 in cell cycle, apoptosis, epigenetic modification and transcriptional regulation for the control of cell growth: A double-edged sword protein.
    Abbastabar M; Kheyrollah M; Azizian K; Bagherlou N; Tehrani SS; Maniati M; Karimian A
    DNA Repair (Amst); 2018 Sep; 69():63-72. PubMed ID: 30075372
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Skp2 in the ubiquitin-proteasome system: A comprehensive review.
    Asmamaw MD; Liu Y; Zheng YC; Shi XJ; Liu HM
    Med Res Rev; 2020 Sep; 40(5):1920-1949. PubMed ID: 32391596
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Skp2 Pathway: A Critical Target for Cancer Therapy.
    Cai Z; Moten A; Peng D; Hsu CC; Pan BS; Manne R; Li HY; Lin HK
    Semin Cancer Biol; 2020 Dec; 67(Pt 2):16-33. PubMed ID: 32014608
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Targeting CDK2 in cancer: challenges and opportunities for therapy.
    Tadesse S; Anshabo AT; Portman N; Lim E; Tilley W; Caldon CE; Wang S
    Drug Discov Today; 2020 Feb; 25(2):406-413. PubMed ID: 31839441
    [TBL] [Abstract][Full Text] [Related]  

  • 56. p27 as a Transcriptional Regulator: New Roles in Development and Cancer.
    Razavipour SF; Harikumar KB; Slingerland JM
    Cancer Res; 2020 Sep; 80(17):3451-3458. PubMed ID: 32341036
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ubiquitin-dependent degradation of CDK2 drives the therapeutic differentiation of AML by targeting PRDX2.
    Ying M; Shao X; Jing H; Liu Y; Qi X; Cao J; Chen Y; Xiang S; Song H; Hu R; Wei G; Yang B; He Q
    Blood; 2018 Jun; 131(24):2698-2711. PubMed ID: 29720484
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Targeting oncogenic Myc as a strategy for cancer treatment.
    Chen H; Liu H; Qing G
    Signal Transduct Target Ther; 2018; 3():5. PubMed ID: 29527331
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pharmacological inactivation of CDK2 inhibits MYC/BCL-XL-driven leukemia in vivo through induction of cellular senescence.
    Bazzar W; Bocci M; Hejll E; Högqvist Tabor V; Hydbring P; Grandien A; Alzrigat M; Larsson LG
    Cell Cycle; 2021 Jan; 20(1):23-38. PubMed ID: 33356836
    [TBL] [Abstract][Full Text] [Related]  

  • 60. MYC Oncogene Contributions to Release of Cell Cycle Brakes.
    García-Gutiérrez L; Delgado MD; León J
    Genes (Basel); 2019 Mar; 10(3):. PubMed ID: 30909496
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.