These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 28665344)
1. Sustainable Use of Pesticide Applications in Citrus: A Support Tool for Volume Rate Adjustment. Garcerá C; Fonte A; Moltó E; Chueca P Int J Environ Res Public Health; 2017 Jun; 14(7):. PubMed ID: 28665344 [TBL] [Abstract][Full Text] [Related]
2. Pesticide dose adjustment in fruit and grapevine orchards by DOSA3D: Fundamentals of the system and on-farm validation. Román C; Peris M; Esteve J; Tejerina M; Cambray J; Vilardell P; Planas S Sci Total Environ; 2022 Feb; 808():152158. PubMed ID: 34871680 [TBL] [Abstract][Full Text] [Related]
3. Pesticide dose based on canopy characteristics in apple trees: Reducing environmental risk by reducing the amount of pesticide while maintaining pest and disease control efficacy. Xun L; Garcia-Ruiz F; Fabregas FX; Gil E Sci Total Environ; 2022 Jun; 826():154204. PubMed ID: 35235850 [TBL] [Abstract][Full Text] [Related]
4. Chemical footprint of pesticides used in citrus orchards based on canopy deposition and off-target losses. Soheilifard F; Marzban A; Ghaseminejad Raini M; Taki M; van Zelm R Sci Total Environ; 2020 Aug; 732():139118. PubMed ID: 32438148 [TBL] [Abstract][Full Text] [Related]
5. Relative efficiencies of experimental and conventional foliar sprayers and assessment of optimal LWA spray volumes in trellised wine grapes. Gil E; Salcedo R; Soler A; Ortega P; Llop J; Campos J; Oliva J Pest Manag Sci; 2021 May; 77(5):2462-2476. PubMed ID: 33442942 [TBL] [Abstract][Full Text] [Related]
6. Spray pesticide applications in Mediterranean citrus orchards: Canopy deposition and off-target losses. Garcerá C; Moltó E; Chueca P Sci Total Environ; 2017 Dec; 599-600():1344-1362. PubMed ID: 28525940 [TBL] [Abstract][Full Text] [Related]
7. Factors influencing the efficacy of two organophosphate insecticides in controlling California red scale, Aonidiella aurantii (Maskell). A basis for reducing spray application volume in Mediterranean conditions. Garcerá C; Moltó E; Chueca P Pest Manag Sci; 2014 Jan; 70(1):28-38. PubMed ID: 23404841 [TBL] [Abstract][Full Text] [Related]
8. Bases for pesticide dose expression and adjustment in 3D crops and comparison of decision support systems. Planas S; Román C; Sanz R; Rosell-Polo JR Sci Total Environ; 2022 Feb; 806(Pt 1):150357. PubMed ID: 34560454 [TBL] [Abstract][Full Text] [Related]
9. Influence of liquid-volume and airflow rates on spray application quality and homogeneity in super-intensive olive tree canopies. Miranda-Fuentes A; Rodríguez-Lizana A; Gil E; Agüera-Vega J; Gil-Ribes JA Sci Total Environ; 2015 Dec; 537():250-9. PubMed ID: 26282759 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of the deposition and distribution of spray droplets in citrus orchards by plant protection drones. Yan Y; Lan Y; Wang G; Hussain M; Wang H; Yu X; Shan C; Wang B; Song C Front Plant Sci; 2023; 14():1303669. PubMed ID: 38093990 [TBL] [Abstract][Full Text] [Related]
11. Toward a new method to classify the airblast sprayers according to their potential drift reduction: comparison of direct and new indirect measurement methods. Grella M; Marucco P; Balsari P Pest Manag Sci; 2019 Aug; 75(8):2219-2235. PubMed ID: 30680860 [TBL] [Abstract][Full Text] [Related]
12. Ultrasonic and LIDAR sensors for electronic canopy characterization in vineyards: advances to improve pesticide application methods. Llorens J; Gil E; Llop J; Escolà A Sensors (Basel); 2011; 11(2):2177-94. PubMed ID: 22319405 [TBL] [Abstract][Full Text] [Related]
13. Environmentally Optimised Sprayer (EOS)--A software application for comprehensive assessment of environmental safety features of sprayers. Doruchowski G; Balsari P; Gil E; Marucco P; Roettele M; Wehmann HJ Sci Total Environ; 2014 Jun; 482-483():201-7. PubMed ID: 24651055 [TBL] [Abstract][Full Text] [Related]
15. Enhance knowledge on sustainable use of plant protection products within the framework of the sustainable use directive. Calliera M; Berta F; Galassi T; Mazzini F; Rossi R; Bassi R; Meriggi P; Bernard A; Marchis A; Di Guardo A; Capri E Pest Manag Sci; 2013 Aug; 69(8):883-8. PubMed ID: 23670844 [TBL] [Abstract][Full Text] [Related]
16. Plant protection product dose rate estimation in apple orchards using a fuzzy logic system. Berk P; Stajnko D; Hočevar M; Malneršič A; Jejčič V; Belšak A PLoS One; 2019; 14(4):e0214315. PubMed ID: 31017938 [TBL] [Abstract][Full Text] [Related]
17. Pesticide residues in orange fruit from citrus orchards in Nuevo Leon State, Mexico. Suárez-Jacobo A; Alcantar-Rosales VM; Alonso-Segura D; Heras-Ramírez M; Elizarragaz-De La Rosa D; Lugo-Melchor O; Gaspar-Ramirez O Food Addit Contam Part B Surveill; 2017 Sep; 10(3):192-199. PubMed ID: 28374639 [TBL] [Abstract][Full Text] [Related]
18. Mechanisms of copper stress alleviation in Citrus trees after metal uptake by leaves or roots. Hippler FWR; Petená G; Boaretto RM; Quaggio JA; Azevedo RA; Mattos-Jr D Environ Sci Pollut Res Int; 2018 May; 25(13):13134-13146. PubMed ID: 29488204 [TBL] [Abstract][Full Text] [Related]
19. Assessing the efficiency of UAV for pesticide application in disease management of peanut crop. Shan C; Wang G; Wang H; Wu L; Song C; Hussain M; Wang H; Lan Y Pest Manag Sci; 2024 Sep; 80(9):4505-4515. PubMed ID: 38703046 [TBL] [Abstract][Full Text] [Related]
20. Fluorescent Dye Paper-Based Method for Assessment of Pesticide Coverage on Leaves and Trees: A Citrus Grove Case Study. Menger RF; Bontha M; Beveridge JR; Borch T; Henry CS J Agric Food Chem; 2020 Nov; 68(47):14009-14014. PubMed ID: 33170700 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]