BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 28665355)

  • 1. In Silico Prediction for Intestinal Absorption and Brain Penetration of Chemical Pesticides in Humans.
    Chedik L; Mias-Lucquin D; Bruyere A; Fardel O
    Int J Environ Res Public Health; 2017 Jun; 14(7):. PubMed ID: 28665355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions of pesticides with membrane drug transporters: implications for toxicokinetics and toxicity.
    Chedik L; Bruyere A; Bacle A; Potin S; Le Vée M; Fardel O
    Expert Opin Drug Metab Toxicol; 2018 Jul; 14(7):739-752. PubMed ID: 29886753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implication of human drug transporters to toxicokinetics and toxicity of pesticides.
    Guéniche N; Bruyere A; Le Vée M; Fardel O
    Pest Manag Sci; 2020 Jan; 76(1):18-25. PubMed ID: 31392818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Silico Modeling of Gastrointestinal Drug Absorption: Predictive Performance of Three Physiologically Based Absorption Models.
    Sjögren E; Thörn H; Tannergren C
    Mol Pharm; 2016 Jun; 13(6):1763-78. PubMed ID: 26926043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules.
    Daina A; Zoete V
    ChemMedChem; 2016 Jun; 11(11):1117-21. PubMed ID: 27218427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical and toxicological evidence of neurological effects of pesticides: the example of Parkinson's disease.
    Moretto A; Colosio C
    Neurotoxicology; 2011 Aug; 32(4):383-91. PubMed ID: 21402100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the use of Classical Nucleation Theory for predicting intestinal crystalline precipitation of two weakly basic BSC class II drugs.
    Carlert S; Lennernäs H; Abrahamsson B
    Eur J Pharm Sci; 2014 Mar; 53():17-27. PubMed ID: 24345794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction and mechanistic interpretation of human oral drug absorption using MI-QSAR analysis.
    Iyer M; Tseng YJ; Senese CL; Liu J; Hopfinger AJ
    Mol Pharm; 2007; 4(2):218-31. PubMed ID: 17397237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of oral drug absorption in humans by theoretical passive absorption model.
    Obata K; Sugano K; Saitoh R; Higashida A; Nabuchi Y; Machida M; Aso Y
    Int J Pharm; 2005 Apr; 293(1-2):183-92. PubMed ID: 15778056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification models for identifying substances exhibiting acute contact toxicity in honeybees (Apis mellifera)
    Venko K; Drgan V; Novič M
    SAR QSAR Environ Res; 2018 Sep; 29(9):743-754. PubMed ID: 30220217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SAR for gastro-intestinal absorption and blood-brain barrier permeation of pesticides.
    Toropov AA; Toropova AP; Benfenati E; Dorne JL
    Chem Biol Interact; 2018 Jun; 290():1-5. PubMed ID: 29753609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro percutaneous penetration of five pesticides--effects of molecular weight and solubility characteristics.
    Nielsen JB; Nielsen F; Sørensen JA
    Ann Occup Hyg; 2004 Nov; 48(8):697-705. PubMed ID: 15509631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In silico prediction of human oral absorption based on QSAR analyses of PAMPA permeability.
    Akamatsu M; Fujikawa M; Nakao K; Shimizu R
    Chem Biodivers; 2009 Nov; 6(11):1845-66. PubMed ID: 19937826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pesticides: an update of human exposure and toxicity.
    Mostafalou S; Abdollahi M
    Arch Toxicol; 2017 Feb; 91(2):549-599. PubMed ID: 27722929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dermal absorption of pesticides in the rat.
    Zendzian RP
    AIHAJ; 2000; 61(4):473-83. PubMed ID: 10976676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential developmental neurotoxicity of pesticides used in Europe.
    Bjørling-Poulsen M; Andersen HR; Grandjean P
    Environ Health; 2008 Oct; 7():50. PubMed ID: 18945337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A systems-level approach for investigating organophosphorus pesticide toxicity.
    Zhu J; Wang J; Ding Y; Liu B; Xiao W
    Ecotoxicol Environ Saf; 2018 Mar; 149():26-35. PubMed ID: 29149660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Review of the state of science and evaluation of currently available in silico prediction models for reproductive and developmental toxicity: A case study on pesticides.
    Weyrich A; Joel M; Lewin G; Hofmann T; Frericks M
    Birth Defects Res; 2022 Aug; 114(14):812-842. PubMed ID: 35748219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental neurotoxicity of different pesticides in PC-12 cells in vitro.
    Christen V; Rusconi M; Crettaz P; Fent K
    Toxicol Appl Pharmacol; 2017 Jun; 325():25-36. PubMed ID: 28385489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental neurotoxic effects of two pesticides: Behavior and biomolecular studies on chlorpyrifos and carbaryl.
    Lee I; Eriksson P; Fredriksson A; Buratovic S; Viberg H
    Toxicol Appl Pharmacol; 2015 Nov; 288(3):429-38. PubMed ID: 26314619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.