BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 28665422)

  • 41. Lanthanide benzoates: a versatile building block for the construction of efficient light emitting materials.
    Reddy ML; Sivakumar S
    Dalton Trans; 2013 Feb; 42(8):2663-78. PubMed ID: 23258556
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Lanthanide coordination polymer nanoparticles for sensing of mercury(II) by photoinduced electron transfer.
    Tan H; Liu B; Chen Y
    ACS Nano; 2012 Dec; 6(12):10505-11. PubMed ID: 23121519
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A versatile ditopic ligand system for sensitizing the luminescence of bimetallic lanthanide bio-imaging probes.
    Chauvin AS; Comby S; Song B; Vandevyver CD; Bünzli JC
    Chemistry; 2008; 14(6):1726-39. PubMed ID: 18098236
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cyclodextrin-Confined Supramolecular Lanthanide Photoswitch.
    Yu HJ; Wang H; Shen FF; Li FQ; Zhang YM; Xu X; Liu Y
    Small; 2022 Jun; 18(24):e2201737. PubMed ID: 35585680
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A general approach to spindle-assembled lanthanide borate nanocrystals and their photoluminescence upon Eu3+/Tb3+ doping.
    Zeng Y; Li Z; Liang Y; Gan X; Zheng M
    Inorg Chem; 2013 Aug; 52(16):9590-6. PubMed ID: 23899367
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A visual and reversible assay for temperature using thioflavin T-doped lanthanide/nucleotide coordination polymers.
    Li YY; Jiang XQ; Zhang M; Shi G
    Analyst; 2016 Apr; 141(8):2347-50. PubMed ID: 27010102
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Target-Triggered Switching on and off the Luminescence of Lanthanide Coordination Polymer Nanoparticles for Selective and Sensitive Sensing of Copper Ions in Rat Brain.
    Huang P; Wu F; Mao L
    Anal Chem; 2015 Jul; 87(13):6834-41. PubMed ID: 26027648
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ratiometric fluorescence detection of sulfide ions based on lanthanide coordination polymer using guanosine diphosphate as ligand.
    Zeng HH; Yu K; Huang J; Liu F; Zhang ZY; Chen SP; Zhang F; Guan SP; Qiu L
    Colloids Surf B Biointerfaces; 2021 Aug; 204():111796. PubMed ID: 33933879
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Detection of anthrax biomarker and metallic ions in aqueous media using spherical-shaped lanthanide infinite coordination polymers.
    Arroyos G; E M Campanella J; M da Silva C; C G Frem R
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Feb; 286():122033. PubMed ID: 36283208
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hydrothermal synthesis, electronic structure and tunable luminescence of single-phase Ca5(PO4)3F:Tb3+,Eu3+ microrods.
    Fu Z; Wang X; Yang Y; Wu Z; Duan D; Fu X
    Dalton Trans; 2014 Feb; 43(7):2819-27. PubMed ID: 24336840
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Novel highly efficient single-component multi-peak emitting aluminosilicate phosphors co-activated with Ce
    Xu C; Guan H; Song Y; An Z; Zhang X; Zhou X; Shi Z; Sheng Y; Zou H
    Phys Chem Chem Phys; 2018 Jan; 20(3):1591-1607. PubMed ID: 29260817
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Color-tunable and white luminescence properties via energy transfer in single-phase KNaCa2(PO4)2:A (A = Ce3+, Eu2+, Tb3+, Mn2+, Sm3+) phosphors.
    Geng D; Shang M; Zhang Y; Lian H; Lin J
    Inorg Chem; 2013 Dec; 52(23):13708-18. PubMed ID: 24187980
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Towards full-color-tunable emission of two component Eu(III)-doped Gd(III) coordination frameworks by the variation of excitation light.
    Zhang F; Yan P; Li H; Zou X; Hou G; Li G
    Dalton Trans; 2014 Sep; 43(33):12574-81. PubMed ID: 25005614
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis, characterization of the luminescent lanthanide complexes with (Z)-4-(4-methoxyphenoxy)-4-oxobut-2-enoic acid.
    Duan GJ; Yang Y; Liu TH; Gao YP
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Feb; 69(2):427-31. PubMed ID: 17919971
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dual-mode fluorescence and colorimetric detection of pesticides realized by integrating stimulus-responsive luminescence with oxidase-mimetic activity into cerium-based coordination polymer nanoparticles.
    Liu P; Zhao M; Zhu H; Zhang M; Li X; Wang M; Liu B; Pan J; Niu X
    J Hazard Mater; 2022 Feb; 423(Pt A):127077. PubMed ID: 34482084
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Switching on luminescence in nucleotide/lanthanide coordination nanoparticles via synergistic interactions with a cofactor ligand.
    Aimé C; Nishiyabu R; Gondo R; Kimizuka N
    Chemistry; 2010 Mar; 16(12):3604-7. PubMed ID: 20191631
    [No Abstract]   [Full Text] [Related]  

  • 57. Syntheses of three new isostructural lanthanide coordination polymers with tunable emission colours through bimetallic doping, and their luminescence sensing properties.
    Liu G; Lu YK; Ma YY; Wang XQ; Hou L; Wang YY
    Dalton Trans; 2019 Sep; 48(36):13607-13613. PubMed ID: 31460536
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An integrated logic system for time-resolved fluorescent "turn-on" detection of cysteine and histidine base on terbium (III) coordination polymer-copper (II) ensemble.
    Xue SF; Lu LF; Wang QX; Zhang S; Zhang M; Shi G
    Talanta; 2016 Sep; 158():208-213. PubMed ID: 27343597
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Photofunctional hybrids of lanthanide functionalized bio-MOF-1 for fluorescence tuning and sensing.
    Shen X; Yan B
    J Colloid Interface Sci; 2015 Aug; 451():63-8. PubMed ID: 25881265
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Diversity of crystal structure with different lanthanide ions involving in situ oxidation-hydrolysis reaction.
    Cheng JW; Zheng ST; Yang GY
    Dalton Trans; 2007 Sep; (36):4059-66. PubMed ID: 17828367
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.