These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 28665525)

  • 1. Capillary electrophoresis and nanomaterials - Part I: Capillary electrophoresis of nanomaterials.
    Adam V; Vaculovicova M
    Electrophoresis; 2017 Oct; 38(19):2389-2404. PubMed ID: 28665525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CE and nanomaterials - Part II: Nanomaterials in CE.
    Adam V; Vaculovicova M
    Electrophoresis; 2017 Oct; 38(19):2405-2430. PubMed ID: 28703399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent applications of nanomaterials in capillary electrophoresis.
    González-Curbelo MÁ; Varela-Martínez DA; Socas-Rodríguez B; Hernández-Borges J
    Electrophoresis; 2017 Oct; 38(19):2431-2446. PubMed ID: 28681950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanomaterial surface chemistry design for advancements in capillary electrophoresis modes.
    Ivanov MR; Haes AJ
    Analyst; 2011 Jan; 136(1):54-63. PubMed ID: 20967383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of nanomaterials in capillary and microchip electrophoresis.
    Wang Y; Ouyang J; Baeyens WR; Delanghe JR
    Expert Rev Proteomics; 2007 Apr; 4(2):287-98. PubMed ID: 17425463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contributions of Capillary Electrophoresis in Analytical Nanometrology: A Critical View.
    Adelantado C; Zougagh M; Ríos Á
    Crit Rev Anal Chem; 2022; 52(5):1094-1111. PubMed ID: 33427485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in nanomaterial-based capillary electrophoresis.
    Kitte SA; Fereja TH; Halawa MI; Lou B; Li H; Xu G
    Electrophoresis; 2019 Aug; 40(16-17):2050-2057. PubMed ID: 31062878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanomaterials for sample pretreatment prior to capillary electrophoretic analysis.
    Adam V; Vaculovicova M
    Analyst; 2017 Mar; 142(6):849-857. PubMed ID: 28203652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of nanomaterials on high-throughput separation methodologies.
    Liang N; Zhang B
    Comb Chem High Throughput Screen; 2011 Mar; 14(3):182-90. PubMed ID: 21271983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An analytical system for single nanomaterials: combination of capillary electrophoresis with Raman spectroscopy or with scanning probe microscopy for individual single-walled carbon nanotube analysis.
    Yamamoto T; Murakami Y; Motoyanagi J; Fukushima T; Maruyama S; Kato M
    Anal Chem; 2009 Sep; 81(17):7336-41. PubMed ID: 19658407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speciation of metal-based nanomaterials in human serum characterized by capillary electrophoresis coupled to ICP-MS: a case study of gold nanoparticles.
    Matczuk M; Anecka K; Scaletti F; Messori L; Keppler BK; Timerbaev AR; Jarosz M
    Metallomics; 2015 Sep; 7(9):1364-70. PubMed ID: 26095799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanomaterials as electrochemical detectors in microfluidics and CE: fundamentals, designs, and applications.
    Pumera M; Escarpa A
    Electrophoresis; 2009 Oct; 30(19):3315-23. PubMed ID: 19728305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances in nanomaterial-assisted detection coupled with capillary and microchip electrophoresis.
    Meng Z; Bi J; Zhang Q; Ren H; Qin W
    Electrophoresis; 2021 Feb; 42(3):269-278. PubMed ID: 33159339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticles and capillary electrophoresis: A marriage with environmental impact.
    Mebert AM; Tuttolomondo MV; Echazú MI; Foglia ML; Alvarez GS; Vescina MC; Santo-Orihuela PL; Desimone MF
    Electrophoresis; 2016 Aug; 37(15-16):2196-207. PubMed ID: 27271238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanomaterials and chip-based nanostructures for capillary electrophoretic separations of DNA.
    Lin YW; Huang MF; Chang HT
    Electrophoresis; 2005 Jan; 26(2):320-30. PubMed ID: 15657878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical detection based on nanomaterials in CE and microfluidic systems.
    Sierra T; Crevillen AG; Escarpa A
    Electrophoresis; 2019 Jan; 40(1):113-123. PubMed ID: 30132928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical detectors based on carbon and metallic nanostructures in capillary and microchip electrophoresis.
    García-Carmona L; Martín A; Sierra T; González MC; Escarpa A
    Electrophoresis; 2017 Jan; 38(1):80-94. PubMed ID: 27412688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of interactions of metal-containing nanoparticles with biomolecules by CE: An update (2012-2016).
    Aleksenko SS; Matczuk M; Timerbaev AR
    Electrophoresis; 2017 Jul; 38(13-14):1661-1668. PubMed ID: 28432684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization and stability of gold nanoparticles depending on their surface chemistry: Contribution of capillary zone electrophoresis to a quality control.
    Pallotta A; Boudier A; Leroy P; Clarot I
    J Chromatogr A; 2016 Aug; 1461():179-84. PubMed ID: 27435685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical separation of Au/Ag core/shell nanoparticles by capillary electrophoresis.
    Liu FK; Tsai MH; Hsu YC; Chu TC
    J Chromatogr A; 2006 Nov; 1133(1-2):340-6. PubMed ID: 16939685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.