These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 28665600)

  • 1. Boosting Gas Involved Reactions at Nanochannel Reactor with Joint Gas-Solid-Liquid Interfaces and Controlled Wettability.
    Mi L; Yu J; He F; Jiang L; Wu Y; Yang L; Han X; Li Y; Liu A; Wei W; Zhang Y; Tian Y; Liu S; Jiang L
    J Am Chem Soc; 2017 Aug; 139(30):10441-10446. PubMed ID: 28665600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An enhanced enzymatic reaction using a triphase system based on superhydrophobic mesoporous nanowire arrays.
    Guan F; Zhang J; Tang H; Chen L; Feng X
    Nanoscale Horiz; 2019 Jan; 4(1):231-235. PubMed ID: 32254161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced catalytic reaction at an air-liquid-solid triphase interface.
    Chen L; Feng X
    Chem Sci; 2020 Mar; 11(12):3124-3131. PubMed ID: 34122816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic reactivity of glucose oxidase confined in nanochannels.
    Yu J; Zhang Y; Liu S
    Biosens Bioelectron; 2014 May; 55():307-12. PubMed ID: 24412427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time monitoring of mass-transport-related enzymatic reaction kinetics in a nanochannel-array reactor.
    Li SJ; Wang C; Wu ZQ; Xu JJ; Xia XH; Chen HY
    Chemistry; 2010 Sep; 16(33):10186-94. PubMed ID: 20645335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinspired in Vitro Lung Airway Model for Inflammatory Analysis via Hydrophobic Nanochannel Membrane with Joint Three-Phase Interface.
    Mi L; Sui J; Wu Y; Liang G; Zhang Y; Pu Y; Tian Y; Liu S; Jiang L
    Anal Chem; 2019 Dec; 91(24):15804-15810. PubMed ID: 31718146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dimension-reconfigurable bubble film nanochannel for wetting based sensing.
    Ma Y; Sun M; Duan X; van den Berg A; Eijkel JCT; Xie Y
    Nat Commun; 2020 Feb; 11(1):814. PubMed ID: 32041959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dramatically different kinetics and mechanism at solid/liquid and solid/gas interfaces for catalytic isopropanol oxidation over size-controlled platinum nanoparticles.
    Wang H; Sapi A; Thompson CM; Liu F; Zherebetskyy D; Krier JM; Carl LM; Cai X; Wang LW; Somorjai GA
    J Am Chem Soc; 2014 Jul; 136(29):10515-20. PubMed ID: 24992695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics study of the influence of wall-gas interactions on heat flow in nanochannels.
    Markvoort AJ; Hilbers PA; Nedea SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 2):066702. PubMed ID: 16089906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH-Responsive Gas-Water-Solid Interface for Multiphase Catalysis.
    Huang J; Cheng F; Binks BP; Yang H
    J Am Chem Soc; 2015 Dec; 137(47):15015-25. PubMed ID: 26524337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small-molecule triggered cascade enzymatic catalysis in hour-glass shaped nanochannel reactor for glucose monitoring.
    Lin L; Yan J; Li J
    Anal Chem; 2014 Nov; 86(21):10546-51. PubMed ID: 25268828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supercritical CO
    Ho TA; Wang Y; Ilgen A; Criscenti LJ; Tenney CM
    Nanoscale; 2018 Nov; 10(42):19957-19963. PubMed ID: 30349913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow chemistry: intelligent processing of gas-liquid transformations using a tube-in-tube reactor.
    Brzozowski M; O'Brien M; Ley SV; Polyzos A
    Acc Chem Res; 2015 Feb; 48(2):349-62. PubMed ID: 25611216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parallel multiphase nanofluidics utilizing nanochannels with partial hydrophobic surface modification and application to femtoliter solvent extraction.
    Kazoe Y; Ugajin T; Ohta R; Mawatari K; Kitamori T
    Lab Chip; 2019 Nov; 19(22):3844-3852. PubMed ID: 31596292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous probing of bulk liquid phase and catalytic gas-liquid-solid interface under working conditions using attenuated total reflection infrared spectroscopy.
    Meemken F; Müller P; Hungerbühler K; Baiker A
    Rev Sci Instrum; 2014 Aug; 85(8):084101. PubMed ID: 25173281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzyme-immobilized hydrogels to create hypoxia for in vitro cancer cell culture.
    Dawes CS; Konig H; Lin CC
    J Biotechnol; 2017 Apr; 248():25-34. PubMed ID: 28284922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Performance Photoelectrochemical Enzymatic Bioanalysis Based on a 3D Porous Cu
    Cheng H; Wang D; Chen L; Ding Z; Feng X
    Langmuir; 2022 Dec; 38(50):15796-15803. PubMed ID: 36469434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The wettability of gas bubbles: from macro behavior to nano structures to applications.
    Huang C; Guo Z
    Nanoscale; 2018 Nov; 10(42):19659-19672. PubMed ID: 30335112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.