These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 28665610)
1. Activation of Sodium Storage Sites in Prussian Blue Analogues via Surface Etching. Ren W; Qin M; Zhu Z; Yan M; Li Q; Zhang L; Liu D; Mai L Nano Lett; 2017 Aug; 17(8):4713-4718. PubMed ID: 28665610 [TBL] [Abstract][Full Text] [Related]
2. Monoclinic Bimetallic Prussian Blue Analog Cathode with High Capacity and Long Life for Advanced Sodium Storage. Shen L; Jiang Y; Jiang Y; Ma J; Yang K; Ma H; Liu Q; Zhu N ACS Appl Mater Interfaces; 2022 Jun; 14(21):24332-24340. PubMed ID: 35604045 [TBL] [Abstract][Full Text] [Related]
3. Highly Crystallized Prussian Blue with Enhanced Kinetics for Highly Efficient Sodium Storage. Qin M; Ren W; Jiang R; Li Q; Yao X; Wang S; You Y; Mai L ACS Appl Mater Interfaces; 2021 Jan; 13(3):3999-4007. PubMed ID: 33439613 [TBL] [Abstract][Full Text] [Related]
4. Hollow Stair-Stepping Spherical High-Entropy Prussian Blue Analogue for High-Rate Sodium Ion Batteries. Zhang Y; Huang J; Qiu L; Jiao R; Zhang Y; Yang G; Zhang L; Tian Z; Debroye E; Liu T; Gohy JF; Hofkens J; Lai F ACS Appl Mater Interfaces; 2024 May; 16(21):27684-27693. PubMed ID: 38753436 [TBL] [Abstract][Full Text] [Related]
5. A Heterostructure Coupling of Bioinspired, Adhesive Polydopamine, and Porous Prussian Blue Nanocubics as Cathode for High-Performance Sodium-Ion Battery. Liu Y; He D; Cheng Y; Li L; Lu Z; Liang R; Fan Y; Qiao Y; Chou S Small; 2020 Mar; 16(11):e1906946. PubMed ID: 32068965 [TBL] [Abstract][Full Text] [Related]
6. Intercalation Pseudocapacitance Boosting Ultrafast Sodium Storage in Prussian Blue Analogs. Wang B; Liu S; Sun W; Tang Y; Pan H; Yan M; Jiang Y ChemSusChem; 2019 Jun; 12(11):2415-2420. PubMed ID: 30912291 [TBL] [Abstract][Full Text] [Related]
7. Preparation of Prussian Blue Submicron Particles with a Pore Structure by Two-Step Optimization for Na-Ion Battery Cathodes. Chen R; Huang Y; Xie M; Zhang Q; Zhang X; Li L; Wu F ACS Appl Mater Interfaces; 2016 Jun; 8(25):16078-86. PubMed ID: 27267656 [TBL] [Abstract][Full Text] [Related]
8. High Capacity and Fast Kinetics Enabled by Metal-Doping in Prussian Blue Analogue Cathodes for Sodium-Ion Batteries. Yimtrakarn T; Lo YA; Kongcharoenkitkul J; Lee JC; Kaveevivitchai W Chem Asian J; 2024 Jul; 19(13):e202301145. PubMed ID: 38703395 [TBL] [Abstract][Full Text] [Related]
9. Ice-Assisted Synthesis of Highly Crystallized Prussian Blue Analogues for All-Climate and Long-Calendar-Life Sodium Ion Batteries. Peng J; Zhang W; Hu Z; Zhao L; Wu C; Peleckis G; Gu Q; Wang JZ; Liu HK; Dou SX; Chou S Nano Lett; 2022 Feb; 22(3):1302-1310. PubMed ID: 35089723 [TBL] [Abstract][Full Text] [Related]
10. Optimizing Mn in Prussian blue analogs with double redox active sites to induce boosted Zn Ye L; Fu H; Cao R; Yang J J Colloid Interface Sci; 2024 Jun; 664():423-432. PubMed ID: 38484511 [TBL] [Abstract][Full Text] [Related]
11. Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries. Wang W; Gang Y; Hu Z; Yan Z; Li W; Li Y; Gu QF; Wang Z; Chou SL; Liu HK; Dou SX Nat Commun; 2020 Feb; 11(1):980. PubMed ID: 32080172 [TBL] [Abstract][Full Text] [Related]
12. Hollow Layered Iron-Based Prussian Blue Cathode with Reduced Defects for High-Performance Sodium-Ion Batteries. Wang CC; Zhang LL; Fu XY; Sun HB; Yang XL ACS Appl Mater Interfaces; 2024 Apr; 16(15):18959-18970. PubMed ID: 38569111 [TBL] [Abstract][Full Text] [Related]
13. Self-Template Synthesis of Prussian Blue Analogue Hollow Polyhedrons as Superior Sodium Storage Cathodes. Huang T; Niu Y; Yang Q; Yang W; Xu M ACS Appl Mater Interfaces; 2021 Aug; 13(31):37187-37193. PubMed ID: 34319687 [TBL] [Abstract][Full Text] [Related]
14. Nano-Ni/Co-PBA as high-performance cathode material for aqueous sodium-ion batteries. Zeng Y; Wang Y; Huang Z; Luo H; Tang H; Dong S; Luo P Nanotechnology; 2023 Sep; 34(47):. PubMed ID: 37604148 [TBL] [Abstract][Full Text] [Related]
15. Improved Reversible Capacity and Cycling Stability by Linear (N=O) Anions in Fe[Fe(CN) Han Q; Hu Y; Gao S; Yang Z; Liu X; Wang C; Han J ChemSusChem; 2023 Oct; 16(20):e202300823. PubMed ID: 37552229 [TBL] [Abstract][Full Text] [Related]
16. Acid-Assisted Ball Mill Synthesis of Carboxyl-Functional-Group-Modified Prussian Blue as Sodium-Ion Battery Cathode. Luo Y; Peng J; Yin S; Xue L; Yan Y Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35457998 [TBL] [Abstract][Full Text] [Related]
17. Ball Milling-Enabled Fe Lucero M; Armitage DB; Yang X; Sandstrom SK; Lyons M; Davis RC; Sterbinsky GE; Kim N; Reed DM; Ji X; Li X; Feng Z ACS Appl Mater Interfaces; 2023 Aug; 15(30):36366-36372. PubMed ID: 37481736 [TBL] [Abstract][Full Text] [Related]
18. Structural Engineering of Prussian Blue Analogues Enabling All-Climate and Ultralong Cycling Sodium-Ion Batteries. Peng J; Hua W; Yang Z; Li JY; Wang J; Liang Y; Zhao L; Lai W; Wu X; Cheng Z; Peleckis G; Indris S; Wang JZ; Liu HK; Dou SX; Chou S ACS Nano; 2024 Jul; ():. PubMed ID: 39007545 [TBL] [Abstract][Full Text] [Related]
19. Self-induced cobalt-derived hollow structure Prussian blue as a cathode for sodium-ion batteries. Luo Y; Peng J; Yan Y RSC Adv; 2021 Sep; 11(50):31827-31833. PubMed ID: 35496833 [TBL] [Abstract][Full Text] [Related]
20. Fluffy-Like Cation-Exchanged Prussian Blue Analogues for Sodium-Ion Battery Cathodes. Zhou Y; Jiang Y; Zhang Y; Chen Y; Wang Z; Liu A; Lv Z; Xie M ACS Appl Mater Interfaces; 2022 Jul; 14(28):32149-32156. PubMed ID: 35791817 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]