These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 28665801)

  • 41. Flavonoid Oxidation Potentials and Antioxidant Activities-Theoretical Models Based on Oxidation Mechanisms and Related Changes in Electronic Structure.
    Miličević A
    Int J Mol Sci; 2024 May; 25(9):. PubMed ID: 38732228
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effect of milk alpha-casein on the antioxidant activity of tea polyphenols.
    Bourassa P; Côté R; Hutchandani S; Samson G; Tajmir-Riahi HA
    J Photochem Photobiol B; 2013 Nov; 128():43-9. PubMed ID: 24001682
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optimisation of the extraction of olive (Olea europaea) leaf phenolics using water/ethanol-based solvent systems and response surface methodology.
    Mylonaki S; Kiassos E; Makris DP; Kefalas P
    Anal Bioanal Chem; 2008 Nov; 392(5):977-85. PubMed ID: 18762919
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding.
    Perron NR; Brumaghim JL
    Cell Biochem Biophys; 2009; 53(2):75-100. PubMed ID: 19184542
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Catechol type polyphenol is a potential modifier of protein sulfhydryls: development and application of a new probe for understanding the dietary polyphenol actions.
    Ishii T; Ishikawa M; Miyoshi N; Yasunaga M; Akagawa M; Uchida K; Nakamura Y
    Chem Res Toxicol; 2009 Oct; 22(10):1689-98. PubMed ID: 19743802
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tea catechins induce the conversion of preformed lysozyme amyloid fibrils to amorphous aggregates.
    He J; Xing YF; Huang B; Zhang YZ; Zeng CM
    J Agric Food Chem; 2009 Dec; 57(23):11391-6. PubMed ID: 19904937
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Measurement of xanthine oxidase inhibition activity of phenolics and flavonoids with a modified cupric reducing antioxidant capacity (CUPRAC) method.
    Ozyürek M; Bektaşoğlu B; Güçlü K; Apak R
    Anal Chim Acta; 2009 Mar; 636(1):42-50. PubMed ID: 19231354
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ferric-reducing ability power of selected plant polyphenols and their metabolites: implications for clinical studies on the antioxidant effects of fruits and vegetable consumption.
    deGraft-Johnson J; Kolodziejczyk K; Krol M; Nowak P; Krol B; Nowak D
    Basic Clin Pharmacol Toxicol; 2007 May; 100(5):345-52. PubMed ID: 17448122
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evaluation of diverse antioxidant activities of Galium aparine.
    Bokhari J; Khan MR; Shabbir M; Rashid U; Jan S; Zai JA
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Feb; 102():24-9. PubMed ID: 23211618
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synergistic and antagonistic interactions of phenolic compounds found in navel oranges.
    Freeman BL; Eggett DL; Parker TL
    J Food Sci; 2010 Aug; 75(6):C570-6. PubMed ID: 20722912
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quantitative structure-activity relationships in prooxidant cytotoxicity of polyphenols: role of potential of phenoxyl radical/phenol redox couple.
    Nemeikaite-Ceniene A; Imbrasaite A; Sergediene E; Cenas N
    Arch Biochem Biophys; 2005 Sep; 441(2):182-90. PubMed ID: 16111645
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Contribution of the phenolic fraction to the antioxidant activity and oxidative stability of olive oil.
    Del Carlo M; Sacchetti G; Di Mattia C; Compagnone D; Mastrocola D; Liberatore L; Cichelli A
    J Agric Food Chem; 2004 Jun; 52(13):4072-9. PubMed ID: 15212450
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of inclusion complex on nitrous acid reaction with flavonoids.
    Khalafi L; Rafiee M; Sedaghat S
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Oct; 81(1):661-5. PubMed ID: 21782497
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optimization of microwave-assisted extraction (MAE) of coriander phenolic antioxidants - response surface methodology approach.
    Zeković Z; Vladić J; Vidović S; Adamović D; Pavlić B
    J Sci Food Agric; 2016 Oct; 96(13):4613-22. PubMed ID: 26916516
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vitro antioxidant activity of Retama monosperma (L.) Boiss.
    Belmokhtar Z; Harche MK
    Nat Prod Res; 2014; 28(24):2324-9. PubMed ID: 25033217
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Quenching of triplet-excited flavins by flavonoids. Structural assessment of antioxidative activity.
    Huvaere K; Olsen K; Skibsted LH
    J Org Chem; 2009 Oct; 74(19):7283-93. PubMed ID: 19736949
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Polyphenols deriving from chalcones: investigations of redox activities.
    Cotelle N; Hapiot P; Pinson J; Rolando C; Vézin H
    J Phys Chem B; 2005 Dec; 109(49):23720-9. PubMed ID: 16375353
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Antioxidant properties of aqueous and ethanolic extracts of tara (Caesalpinia spinosa) pods in vitro and in model food emulsions.
    Skowyra M; Falguera V; Gallego G; Peiró S; Almajano MP
    J Sci Food Agric; 2014 Mar; 94(5):911-8. PubMed ID: 23929224
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Activation of erythrocyte plasma membrane redox system provides a useful method to evaluate antioxidant potential of plant polyphenols.
    Rizvi SI; Jha R; Pandey KB
    Methods Mol Biol; 2010; 594():341-8. PubMed ID: 20072929
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluation of the redox properties and anti/pro-oxidant effects of selected flavonoids by means of a DNA-based electrochemical biosensor.
    Labuda J; Bucková M; Heilerová L; Silhár S; Stepánek I
    Anal Bioanal Chem; 2003 May; 376(2):168-73. PubMed ID: 12712310
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.