These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 28665968)

  • 1. High-dose thiamine prevents brain lesions and prolongs survival of Slc19a3-deficient mice.
    Suzuki K; Yamada K; Fukuhara Y; Tsuji A; Shibata K; Wakamatsu N
    PLoS One; 2017; 12(6):e0180279. PubMed ID: 28665968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible lactic acidosis in a newborn with thiamine transporter-2 deficiency.
    Pérez-Dueñas B; Serrano M; Rebollo M; Muchart J; Gargallo E; Dupuits C; Artuch R
    Pediatrics; 2013 May; 131(5):e1670-5. PubMed ID: 23589815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free-thiamine is a potential biomarker of thiamine transporter-2 deficiency: a treatable cause of Leigh syndrome.
    Ortigoza-Escobar JD; Molero-Luis M; Arias A; Oyarzabal A; Darín N; Serrano M; Garcia-Cazorla A; Tondo M; Hernández M; Garcia-Villoria J; Casado M; Gort L; Mayr JA; Rodríguez-Pombo P; Ribes A; Artuch R; Pérez-Dueñas B
    Brain; 2016 Jan; 139(Pt 1):31-8. PubMed ID: 26657515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exome sequencing reveals a novel Moroccan founder mutation in SLC19A3 as a new cause of early-childhood fatal Leigh syndrome.
    Gerards M; Kamps R; van Oevelen J; Boesten I; Jongen E; de Koning B; Scholte HR; de Angst I; Schoonderwoerd K; Sefiani A; Ratbi I; Coppieters W; Karim L; de Coo R; van den Bosch B; Smeets H
    Brain; 2013 Mar; 136(Pt 3):882-90. PubMed ID: 23423671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic defects of thiamine transport and metabolism: A review of clinical phenotypes, genetics, and functional studies.
    Marcé-Grau A; Martí-Sánchez L; Baide-Mairena H; Ortigoza-Escobar JD; Pérez-Dueñas B
    J Inherit Metab Dis; 2019 Jul; 42(4):581-597. PubMed ID: 31095747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thiamine Deficiency-Mediated Brain Mitochondrial Pathology in Alaskan Huskies with Mutation in SLC19A3.1.
    Vernau K; Napoli E; Wong S; Ross-Inta C; Cameron J; Bannasch D; Bollen A; Dickinson P; Giulivi C
    Brain Pathol; 2015 Jul; 25(4):441-53. PubMed ID: 25117056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotin-thiamine responsive basal ganglia disease: Identification of a pyruvate peak on brain spectroscopy, novel mutation in SLC19A3, and calculation of prevalence based on allele frequencies from aggregated next-generation sequencing data.
    Ferreira CR; Whitehead MT; Leon E
    Am J Med Genet A; 2017 Jun; 173(6):1502-1513. PubMed ID: 28402605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide association analysis identifies a mutation in the thiamine transporter 2 (SLC19A3) gene associated with Alaskan Husky encephalopathy.
    Vernau KM; Runstadler JA; Brown EA; Cameron JM; Huson HJ; Higgins RJ; Ackerley C; Sturges BK; Dickinson PJ; Puschner B; Giulivi C; Shelton GD; Robinson BH; DiMauro S; Bollen AW; Bannasch DL
    PLoS One; 2013; 8(3):e57195. PubMed ID: 23469184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rasagiline prevents neurodegeneration in thiamine deficient rats-a longitudinal MRI study.
    Dror V; Rehavi M; Biton IE; Eliash S
    Brain Res; 2014 Apr; 1557():43-54. PubMed ID: 24525144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Impacts of Slc19a3 Deletion and Intestinal SLC19A3 Insertion on Thiamine Distribution and Brain Metabolism in the Mouse.
    Wen A; Zhu Y; Yee SW; Park BI; Giacomini KM; Greenberg AS; Newman JW
    Metabolites; 2023 Jul; 13(8):. PubMed ID: 37623829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stress-induced upregulation of SLC19A3 is impaired in biotin-thiamine-responsive basal ganglia disease.
    Schänzer A; Döring B; Ondrouschek M; Goos S; Garvalov BK; Geyer J; Acker T; Neubauer B; Hahn A
    Brain Pathol; 2014 Apr; 24(3):270-9. PubMed ID: 24372704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eleven novel mutations and clinical characteristics in seven Chinese patients with thiamine metabolism dysfunction syndrome.
    Li D; Song J; Li X; Liu Y; Dong H; Kang L; Liu Y; Zhang Y; Jin Y; Guan H; Zhou C; Yang Y
    Eur J Med Genet; 2020 Oct; 63(10):104003. PubMed ID: 32679198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Are diagnostic magnetic resonance patterns life-saving in children with biotin-thiamine-responsive basal ganglia disease?
    Kamaşak T; Havalı C; İnce H; Eyüboğlu İ; Çebi AH; Sahin S; Cansu A; Aydin K
    Eur J Paediatr Neurol; 2018 Nov; 22(6):1139-1149. PubMed ID: 30054086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biotin-thiamine-responsive basal ganglia disease: catastrophic consequences of delay in diagnosis and treatment.
    Algahtani H; Ghamdi S; Shirah B; Alharbi B; Algahtani R; Bazaid A
    Neurol Res; 2017 Feb; 39(2):117-125. PubMed ID: 27905264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. eNOS gene deletion restores blood-brain barrier integrity and attenuates neurodegeneration in the thiamine-deficient mouse brain.
    Beauchesne E; Desjardins P; Hazell AS; Butterworth RF
    J Neurochem; 2009 Oct; 111(2):452-9. PubMed ID: 19686244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuropathological characteristics of the brain in two patients with SLC19A3 mutations related to the biotin-thiamine-responsive basal ganglia disease.
    Pronicki M; Piekutowska-Abramczuk D; Jurkiewicz E; Rokicki D; Ciara E; Trubicka J; Iwanicka-Pronicka K; Pajdowska M; Migdał M; Grajkowska WA
    Folia Neuropathol; 2017; 55(2):146-153. PubMed ID: 28677371
    [No Abstract]   [Full Text] [Related]  

  • 17. Microglial activation and vascular responses that are associated with early thalamic neurodegeneration resulting from thiamine deficiency.
    Bowyer JF; Tranter KM; Sarkar S; Hanig JP
    Neurotoxicology; 2018 Mar; 65():98-110. PubMed ID: 29427613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A wide spectrum of clinical and brain MRI findings in patients with SLC19A3 mutations.
    Yamada K; Miura K; Hara K; Suzuki M; Nakanishi K; Kumagai T; Ishihara N; Yamada Y; Kuwano R; Tsuji S; Wakamatsu N
    BMC Med Genet; 2010 Dec; 11():171. PubMed ID: 21176162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low expression of thiamine pyrophosphokinase-1 contributes to brain susceptibility to thiamine deficiency.
    Xia Y; Qian T; Fei G; Cheng X; Zhao L; Sang S; Zhong C
    Neuroreport; 2024 Oct; 35(15):1000-1009. PubMed ID: 39190417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Derivation of two iPSC lines (KAIMRCi004-A, KAIMRCi004-B) from a Saudi patient with Biotin-Thiamine-responsive Basal Ganglia Disease (BTBGD) carrying homozygous pathogenic missense variant in the SCL19A3 gene.
    Alowaysi M; Baadhaim M; Al-Shehri M; Alzahrani H; Badkok A; Attas H; Zakri S; Alameer S; Malibari D; Hosawi M; Daghestani M; Al-Ghamdi K; Muharraq M; Zia A; Tegne J; Alfadhel M; Aboalola D; Alsayegh K
    Hum Cell; 2024 Sep; 37(5):1567-1577. PubMed ID: 38980565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.