These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Elevated levels of polymorphonuclear myeloid-derived suppressor cells in patients with glioblastoma highly express S100A8/9 and arginase and suppress T cell function. Gielen PR; Schulte BM; Kers-Rebel ED; Verrijp K; Bossman SA; Ter Laan M; Wesseling P; Adema GJ Neuro Oncol; 2016 Sep; 18(9):1253-64. PubMed ID: 27006175 [TBL] [Abstract][Full Text] [Related]
5. Glioblastoma Myeloid-Derived Suppressor Cell Subsets Express Differential Macrophage Migration Inhibitory Factor Receptor Profiles That Can Be Targeted to Reduce Immune Suppression. Alban TJ; Bayik D; Otvos B; Rabljenovic A; Leng L; Jia-Shiun L; Roversi G; Lauko A; Momin AA; Mohammadi AM; Peereboom DM; Ahluwalia MS; Matsuda K; Yun K; Bucala R; Vogelbaum MA; Lathia JD Front Immunol; 2020; 11():1191. PubMed ID: 32625208 [TBL] [Abstract][Full Text] [Related]
6. Conditioned media from the renal cell carcinoma cell line 786.O drives human blood monocytes to a monocytic myeloid-derived suppressor cell phenotype. Okada SL; Simmons RM; Franke-Welch S; Nguyen TH; Korman AJ; Dillon SR; Gilbertson DG Cell Immunol; 2018 Jan; 323():49-58. PubMed ID: 29103587 [TBL] [Abstract][Full Text] [Related]
7. CD4+ T effector memory cell dysfunction is associated with the accumulation of granulocytic myeloid-derived suppressor cells in glioblastoma patients. Dubinski D; Wölfer J; Hasselblatt M; Schneider-Hohendorf T; Bogdahn U; Stummer W; Wiendl H; Grauer OM Neuro Oncol; 2016 Jun; 18(6):807-18. PubMed ID: 26578623 [TBL] [Abstract][Full Text] [Related]
8. Glioma exosomes mediate the expansion and function of myeloid-derived suppressor cells through microRNA-29a/Hbp1 and microRNA-92a/Prkar1a pathways. Guo X; Qiu W; Wang J; Liu Q; Qian M; Wang S; Zhang Z; Gao X; Chen Z; Guo Q; Xu J; Xue H; Li G Int J Cancer; 2019 Jun; 144(12):3111-3126. PubMed ID: 30536597 [TBL] [Abstract][Full Text] [Related]
9. Prostaglandin E2 Leads to the Acquisition of DNMT3A-Dependent Tolerogenic Functions in Human Myeloid-Derived Suppressor Cells. Rodríguez-Ubreva J; Català-Moll F; Obermajer N; Álvarez-Errico D; Ramirez RN; Company C; Vento-Tormo R; Moreno-Bueno G; Edwards RP; Mortazavi A; Kalinski P; Ballestar E Cell Rep; 2017 Oct; 21(1):154-167. PubMed ID: 28978469 [TBL] [Abstract][Full Text] [Related]
10. Systemic T Cells Immunosuppression of Glioma Stem Cell-Derived Exosomes Is Mediated by Monocytic Myeloid-Derived Suppressor Cells. Domenis R; Cesselli D; Toffoletto B; Bourkoula E; Caponnetto F; Manini I; Beltrami AP; Ius T; Skrap M; Di Loreto C; Gri G PLoS One; 2017; 12(1):e0169932. PubMed ID: 28107450 [TBL] [Abstract][Full Text] [Related]
11. The STAT3 inhibitor galiellalactone inhibits the generation of MDSC-like monocytes by prostate cancer cells and decreases immunosuppressive and tumorigenic factors. Hellsten R; Lilljebjörn L; Johansson M; Leandersson K; Bjartell A Prostate; 2019 Oct; 79(14):1611-1621. PubMed ID: 31348843 [TBL] [Abstract][Full Text] [Related]
12. Altered Metabolism in Glioblastoma: Myeloid-Derived Suppressor Cell (MDSC) Fitness and Tumor-Infiltrating Lymphocyte (TIL) Dysfunction. Di Ianni N; Musio S; Pellegatta S Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33923299 [TBL] [Abstract][Full Text] [Related]
13. Functional assay to assess T-cell inhibitory properties of myeloid derived suppressor cells (MDSCs) isolated from the tumor microenvironment of murine glioma models. Alghamri MS; Kamran N; Kadiyala P; Lowenstein PR; Castro MG Methods Enzymol; 2020; 632():215-228. PubMed ID: 32000897 [TBL] [Abstract][Full Text] [Related]
14. Explicating the Pivotal Pathogenic, Diagnostic, and Therapeutic Biomarker Potentials of Myeloid-Derived Suppressor Cells in Glioblastoma. Richard SA Dis Markers; 2020; 2020():8844313. PubMed ID: 33204365 [TBL] [Abstract][Full Text] [Related]
15. Immunosuppressive effects and mechanisms of three myeloid-derived suppressor cells subsets including monocytic-myeloid-derived suppressor cells, granulocytic-myeloid-derived suppressor cells, and immature-myeloid-derived suppressor cells. Nagatani Y; Funakoshi Y; Suto H; Imamura Y; Toyoda M; Kiyota N; Yamashita K; Minami H J Cancer Res Ther; 2021; 17(4):1093-1100. PubMed ID: 34528569 [TBL] [Abstract][Full Text] [Related]
16. Myeloid-derived suppressor cell accumulation and function in patients with newly diagnosed glioblastoma. Raychaudhuri B; Rayman P; Ireland J; Ko J; Rini B; Borden EC; Garcia J; Vogelbaum MA; Finke J Neuro Oncol; 2011 Jun; 13(6):591-9. PubMed ID: 21636707 [TBL] [Abstract][Full Text] [Related]
17. Increasing glioma-associated monocytes leads to increased intratumoral and systemic myeloid-derived suppressor cells in a murine model. Chae M; Peterson TE; Balgeman A; Chen S; Zhang L; Renner DN; Johnson AJ; Parney IF Neuro Oncol; 2015 Jul; 17(7):978-91. PubMed ID: 25537019 [TBL] [Abstract][Full Text] [Related]
18. New Insights into the Multifaceted Role of Myeloid-Derived Suppressor Cells (MDSCs) in High-Grade Gliomas: From Metabolic Reprograming, Immunosuppression, and Therapeutic Resistance to Current Strategies for Targeting MDSCs. Lakshmanachetty S; Cruz-Cruz J; Hoffmeyer E; Cole AP; Mitra SS Cells; 2021 Apr; 10(4):. PubMed ID: 33919732 [TBL] [Abstract][Full Text] [Related]
19. Global immune fingerprinting in glioblastoma patient peripheral blood reveals immune-suppression signatures associated with prognosis. Alban TJ; Alvarado AG; Sorensen MD; Bayik D; Volovetz J; Serbinowski E; Mulkearns-Hubert EE; Sinyuk M; Hale JS; Onzi GR; McGraw M; Huang P; Grabowski MM; Wathen CA; Ahluwalia MS; Radivoyevitch T; Kornblum HI; Kristensen BW; Vogelbaum MA; Lathia JD JCI Insight; 2018 Nov; 3(21):. PubMed ID: 30385717 [TBL] [Abstract][Full Text] [Related]
20. Immune consequences of penfluridol treatment associated with inhibition of glioblastoma tumor growth. Ranjan A; Wright S; Srivastava SK Oncotarget; 2017 Jul; 8(29):47632-47641. PubMed ID: 28512255 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]