These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 28666028)

  • 1. Regeneration of hyaline-like cartilage in situ with SOX9 stimulation of bone marrow-derived mesenchymal stem cells.
    Zhang X; Wu S; Naccarato T; Prakash-Damani M; Chou Y; Chu CQ; Zhu Y
    PLoS One; 2017; 12(6):e0180138. PubMed ID: 28666028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term durable repaired cartilage induced by SOX9
    Zhang X; Wu S; Zhu Y; Chu CQ
    Int J Med Sci; 2021; 18(6):1399-1405. PubMed ID: 33628096
    [No Abstract]   [Full Text] [Related]  

  • 3. Hyaline cartilage regeneration by combined therapy of microfracture and long-term bone morphogenetic protein-2 delivery.
    Yang HS; La WG; Bhang SH; Kim HJ; Im GI; Lee H; Park JH; Kim BS
    Tissue Eng Part A; 2011 Jul; 17(13-14):1809-18. PubMed ID: 21366427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploiting Joint-Resident Stem Cells by Exogenous SOX9 for Cartilage Regeneration for Therapy of Osteoarthritis.
    Zhang X; Wu S; Zhu Y; Chu CQ
    Front Med (Lausanne); 2021; 8():622609. PubMed ID: 33681252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis.
    Bosnakovski D; Mizuno M; Kim G; Takagi S; Okumura M; Fujinaga T
    Biotechnol Bioeng; 2006 Apr; 93(6):1152-63. PubMed ID: 16470881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization and use of Equine Bone Marrow Mesenchymal Stem Cells in Equine Cartilage Engineering. Study of their Hyaline Cartilage Forming Potential when Cultured under Hypoxia within a Biomaterial in the Presence of BMP-2 and TGF-ß1.
    Branly T; Bertoni L; Contentin R; Rakic R; Gomez-Leduc T; Desancé M; Hervieu M; Legendre F; Jacquet S; Audigié F; Denoix JM; Demoor M; Galéra P
    Stem Cell Rev Rep; 2017 Oct; 13(5):611-630. PubMed ID: 28597211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The promotion of cartilage defect repair using adenovirus mediated Sox9 gene transfer of rabbit bone marrow mesenchymal stem cells.
    Cao L; Yang F; Liu G; Yu D; Li H; Fan Q; Gan Y; Tang T; Dai K
    Biomaterials; 2011 Jun; 32(16):3910-20. PubMed ID: 21377725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Overexpression of Sox9 gene by the lentiviral vector in rabbit bone marrow mesenchymal stem cells for promoting the repair of cartilage defect].
    Wang Z; Liang DC; Bai JY; Kang N; Feng JY; Yang ZQ
    Zhongguo Gu Shang; 2015 May; 28(5):433-40. PubMed ID: 26193723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic Compressive Loading Improves Cartilage Repair in an In Vitro Model of Microfracture: Comparison of 2 Mechanical Loading Regimens on Simulated Microfracture Based on Fibrin Gel Scaffolds Encapsulating Connective Tissue Progenitor Cells.
    Iseki T; Rothrauff BB; Kihara S; Sasaki H; Yoshiya S; Fu FH; Tuan RS; Gottardi R
    Am J Sports Med; 2019 Jul; 47(9):2188-2199. PubMed ID: 31307219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutamic acid-based dendritic peptides for scaffold-free cartilage tissue engineering.
    Sivadas VP; Dhawan S; Babu J; Haridas V; Nair PD
    Acta Biomater; 2019 Nov; 99():196-210. PubMed ID: 31521812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved cartilage regeneration utilizing mesenchymal stem cells in TGF-beta1 gene-activated scaffolds.
    Diao H; Wang J; Shen C; Xia S; Guo T; Dong L; Zhang C; Chen J; Zhao J; Zhang J
    Tissue Eng Part A; 2009 Sep; 15(9):2687-98. PubMed ID: 19216641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-step articular cartilage repair: combination of in situ bone marrow stem cells with cell-free poly(L-lactic-co-glycolic acid) scaffold in a rabbit model.
    Shi J; Zhang X; Zeng X; Zhu J; Pi Y; Zhou C; Ao Y
    Orthopedics; 2012 May; 35(5):e665-71. PubMed ID: 22588408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parathyroid Hormone-Induced Bone Marrow Mesenchymal Stem Cell Chondrogenic Differentiation and its Repair of Articular Cartilage Injury in Rabbits.
    Chen Y; Chen Y; Zhang S; Du X; Bai B
    Med Sci Monit Basic Res; 2016 Nov; 22():132-145. PubMed ID: 27847384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyglycolic acid-hyaluronan scaffolds loaded with bone marrow-derived mesenchymal stem cells show chondrogenic differentiation in vitro and cartilage repair in the rabbit model.
    Patrascu JM; Krüger JP; Böss HG; Ketzmar AK; Freymann U; Sittinger M; Notter M; Endres M; Kaps C
    J Biomed Mater Res B Appl Biomater; 2013 Oct; 101(7):1310-20. PubMed ID: 23661546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biologically Regulated Marrow Stimulation by Blocking TGF-β1 With Losartan Oral Administration Results in Hyaline-like Cartilage Repair: A Rabbit Osteochondral Defect Model.
    Utsunomiya H; Gao X; Deng Z; Cheng H; Nakama G; Scibetta AC; Ravuri SK; Goldman JL; Lowe WR; Rodkey WG; Alliston T; Philippon MJ; Huard J
    Am J Sports Med; 2020 Mar; 48(4):974-984. PubMed ID: 32027515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histone hypo-acetylation of Sox9 mediates nicotine-induced weak cartilage repair by suppressing BMSC chondrogenic differentiation.
    Tie K; Wu M; Deng Y; Wen Y; Dan Xu ; Chen L; Wang H
    Stem Cell Res Ther; 2018 Apr; 9(1):98. PubMed ID: 29631619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Situ Articular Cartilage Regeneration through Endogenous Reparative Cell Homing Using a Functional Bone Marrow-Specific Scaffolding System.
    Sun X; Yin H; Wang Y; Lu J; Shen X; Lu C; Tang H; Meng H; Yang S; Yu W; Zhu Y; Guo Q; Wang A; Xu W; Liu S; Lu S; Wang X; Peng J
    ACS Appl Mater Interfaces; 2018 Nov; 10(45):38715-38728. PubMed ID: 30360061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of differential properties of fibrochondrocytes and hyaline chondrocytes in growing rabbits.
    Huang L; Li M; Li H; Yang C; Cai X
    Br J Oral Maxillofac Surg; 2015 Feb; 53(2):187-93. PubMed ID: 25529749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zinc-finger protein 145, acting as an upstream regulator of SOX9, improves the differentiation potential of human mesenchymal stem cells for cartilage regeneration and repair.
    Liu TM; Guo XM; Tan HS; Hui JH; Lim B; Lee EH
    Arthritis Rheum; 2011 Sep; 63(9):2711-20. PubMed ID: 21547890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reappraisal of mesenchymal chondrosarcoma: novel morphologic observations of the hyaline cartilage and endochondral ossification and beta-catenin, Sox9, and osteocalcin immunostaining of 22 cases.
    Fanburg-Smith JC; Auerbach A; Marwaha JS; Wang Z; Rushing EJ
    Hum Pathol; 2010 May; 41(5):653-62. PubMed ID: 20138330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.