These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 28666085)
1. Effect of Solid-State Polarization on Charge-Transfer Excitations and Transport Levels at Organic Interfaces from a Screened Range-Separated Hybrid Functional. Zheng Z; Egger DA; Brédas JL; Kronik L; Coropceanu V J Phys Chem Lett; 2017 Jul; 8(14):3277-3283. PubMed ID: 28666085 [TBL] [Abstract][Full Text] [Related]
2. Description of the Charge Transfer States at the Pentacene/C60 Interface: Combining Range-Separated Hybrid Functionals with the Polarizable Continuum Model. Zheng Z; Brédas JL; Coropceanu V J Phys Chem Lett; 2016 Jul; 7(13):2616-21. PubMed ID: 27338105 [TBL] [Abstract][Full Text] [Related]
3. Fundamental Gaps of Condensed-Phase Organic Semiconductors from Single-Molecule Calculations using Polarization-Consistent Optimally Tuned Screened Range-Separated Hybrid Functionals. Bhandari S; Cheung MS; Geva E; Kronik L; Dunietz BD J Chem Theory Comput; 2018 Dec; 14(12):6287-6294. PubMed ID: 30444365 [TBL] [Abstract][Full Text] [Related]
4. Screened optimally tuned range separated hybrid functional for solvated low bandgap molecular systems. Dantas Filho RV; de Queiroz TB J Chem Phys; 2024 Jul; 161(3):. PubMed ID: 39007381 [TBL] [Abstract][Full Text] [Related]
5. Theoretical Study of the Local and Charge-Transfer Excitations in Model Complexes of Pentacene-C60 Using Tuned Range-Separated Hybrid Functionals. Zhang CR; Sears JS; Yang B; Aziz SG; Coropceanu V; Brédas JL J Chem Theory Comput; 2014 Jun; 10(6):2379-88. PubMed ID: 26580758 [TBL] [Abstract][Full Text] [Related]
6. Screened Range-Separated Hybrid Functional with Polarizable Continuum Model Overcomes Challenges in Describing Triplet Excitations in the Condensed Phase Using TDDFT. Begam K; Bhandari S; Maiti B; Dunietz BD J Chem Theory Comput; 2020 May; 16(5):3287-3293. PubMed ID: 32309951 [TBL] [Abstract][Full Text] [Related]
7. Quantitative Prediction of Optical Absorption in Molecular Solids from an Optimally Tuned Screened Range-Separated Hybrid Functional. Manna AK; Refaely-Abramson S; Reilly AM; Tkatchenko A; Neaton JB; Kronik L J Chem Theory Comput; 2018 Jun; 14(6):2919-2929. PubMed ID: 29727172 [TBL] [Abstract][Full Text] [Related]
8. Quantitative Accuracy in Calculating Charge Transfer State Energies in Solvated Molecular Complexes Using a Screened Range Separated Hybrid Functional within a Polarized Continuum Model. Bhandari S; Dunietz BD J Chem Theory Comput; 2019 Aug; 15(8):4305-4311. PubMed ID: 31356067 [TBL] [Abstract][Full Text] [Related]
9. Charge-Transfer States in Organic Solar Cells: Understanding the Impact of Polarization, Delocalization, and Disorder. Zheng Z; Tummala NR; Fu YT; Coropceanu V; Brédas JL ACS Appl Mater Interfaces; 2017 May; 9(21):18095-18102. PubMed ID: 28481497 [TBL] [Abstract][Full Text] [Related]
10. Calculating High Energy Charge Transfer States Using Optimally Tuned Range-Separated Hybrid Functionals. Manna AK; Lee MH; McMahon KL; Dunietz BD J Chem Theory Comput; 2015 Mar; 11(3):1110-7. PubMed ID: 26579761 [TBL] [Abstract][Full Text] [Related]
11. The crucial role of a spacer material on the efficiency of charge transfer processes in organic donor-acceptor junction solar cells. Nieman R; Tsai H; Nie W; Aquino AJA; Mohite AD; Tretiak S; Li H; Lischka H Nanoscale; 2017 Dec; 10(1):451-459. PubMed ID: 29227494 [TBL] [Abstract][Full Text] [Related]
12. Spin-State Energetics of Fe Complexes from an Optimally Tuned Range-Separated Hybrid Functional. Prokopiou G; Kronik L Chemistry; 2018 Apr; 24(20):5173-5182. PubMed ID: 28984392 [TBL] [Abstract][Full Text] [Related]
13. Charge-Transfer Versus Charge-Transfer-Like Excitations Revisited. Moore B; Sun H; Govind N; Kowalski K; Autschbach J J Chem Theory Comput; 2015 Jul; 11(7):3305-20. PubMed ID: 26575765 [TBL] [Abstract][Full Text] [Related]
14. Prediction of the lowest charge-transfer excited-state energy at the donor-acceptor interface in a condensed phase using ground-state DFT calculations with generalized Kohn-Sham functionals. Zheng S; Xiao M; Tian Y; Chen X J Mol Model; 2017 Aug; 23(8):235. PubMed ID: 28733882 [TBL] [Abstract][Full Text] [Related]
15. Ultrafast charge transfer in a nonfullerene all-small-molecule organic solar cell: a nonadiabatic dynamics simulation with optimally tuned range-separated functional. Mao D; Chen XR; Li DH; Liu XY; Cui G; Li L Phys Chem Chem Phys; 2022 Nov; 24(44):27173-27183. PubMed ID: 36321450 [TBL] [Abstract][Full Text] [Related]
16. Hot and Cold Charge-Transfer Mechanisms in Organic Photovoltaics: Insights into the Excited States of Donor/Acceptor Interfaces. Fazzi D; Barbatti M; Thiel W J Phys Chem Lett; 2017 Oct; 8(19):4727-4734. PubMed ID: 28903560 [TBL] [Abstract][Full Text] [Related]
17. Excitation Gaps of Finite-Sized Systems from Optimally Tuned Range-Separated Hybrid Functionals. Kronik L; Stein T; Refaely-Abramson S; Baer R J Chem Theory Comput; 2012 May; 8(5):1515-31. PubMed ID: 26593646 [TBL] [Abstract][Full Text] [Related]
18. Electronic Structure of Multicomponent Organic Molecular Materials: Evaluation of Range-Separated Hybrid Functionals. Cho E; Coropceanu V; Brédas JL J Chem Theory Comput; 2020 Jun; 16(6):3712-3719. PubMed ID: 32338893 [TBL] [Abstract][Full Text] [Related]
19. Tuned range separated hybrid functionals for solvated low bandgap oligomers. de Queiroz TB; Kümmel S J Chem Phys; 2015 Jul; 143(3):034101. PubMed ID: 26203008 [TBL] [Abstract][Full Text] [Related]
20. Organic electronic materials: recent advances in the DFT description of the ground and excited states using tuned range-separated hybrid functionals. Körzdörfer T; Brédas JL Acc Chem Res; 2014 Nov; 47(11):3284-91. PubMed ID: 24784485 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]