BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

433 related articles for article (PubMed ID: 28666086)

  • 1. Periodic Arrays of Phosphorene Nanopores as Antidot Lattices with Tunable Properties.
    Cupo A; Masih Das P; Chien CC; Danda G; Kharche N; Tristant D; Drndić M; Meunier V
    ACS Nano; 2017 Jul; 11(7):7494-7507. PubMed ID: 28666086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum confinement in black phosphorus-based nanostructures.
    Cupo A; Meunier V
    J Phys Condens Matter; 2017 Jul; 29(28):283001. PubMed ID: 28604363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomically precise vacancy-assembled quantum antidots.
    Fang H; Mahalingam H; Li X; Han X; Qiu Z; Han Y; Noori K; Dulal D; Chen H; Lyu P; Yang T; Li J; Su C; Chen W; Cai Y; Neto AHC; Novoselov KS; Rodin A; Lu J
    Nat Nanotechnol; 2023 Dec; 18(12):1401-1408. PubMed ID: 37653051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Band structures and transport properties of zigzag graphene nanoribbons with antidot arrays.
    Zhang YT; Li QM; Li YC; Zhang YY; Zhai F
    J Phys Condens Matter; 2010 Aug; 22(31):315304. PubMed ID: 21399360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dirac model of electronic transport in graphene antidot barriers.
    Thomsen MR; Brun SJ; Pedersen TG
    J Phys Condens Matter; 2014 Aug; 26(33):335301. PubMed ID: 25071080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic and optical properties of graphene antidot lattices: comparison of Dirac and tight-binding models.
    Brun SJ; Thomsen MR; Pedersen TG
    J Phys Condens Matter; 2014 Jul; 26(26):265301. PubMed ID: 24911836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable transport gap in phosphorene.
    Das S; Zhang W; Demarteau M; Hoffmann A; Dubey M; Roelofs A
    Nano Lett; 2014 Oct; 14(10):5733-9. PubMed ID: 25111042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ballistic Transport in Graphene Antidot Lattices.
    Sandner A; Preis T; Schell C; Giudici P; Watanabe K; Taniguchi T; Weiss D; Eroms J
    Nano Lett; 2015 Dec; 15(12):8402-6. PubMed ID: 26598218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interrelation of Aromaticity and Conductivity of Graphene Dots/Antidots and Related Nanostructures.
    Zdetsis AD; Economou EN
    J Phys Chem C Nanomater Interfaces; 2016 Dec; 120(51):29463-29475. PubMed ID: 28127414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled Sculpture of Black Phosphorus Nanoribbons.
    Masih Das P; Danda G; Cupo A; Parkin WM; Liang L; Kharche N; Ling X; Huang S; Dresselhaus MS; Meunier V; Drndić M
    ACS Nano; 2016 Jun; 10(6):5687-95. PubMed ID: 27192448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2D MATERIALS. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus.
    Kim J; Baik SS; Ryu SH; Sohn Y; Park S; Park BG; Denlinger J; Yi Y; Choi HJ; Kim KS
    Science; 2015 Aug; 349(6249):723-6. PubMed ID: 26273052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing Single Vacancies in Black Phosphorus at the Atomic Level.
    Kiraly B; Hauptmann N; Rudenko AN; Katsnelson MI; Khajetoorians AA
    Nano Lett; 2017 Jun; 17(6):3607-3612. PubMed ID: 28481547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorene: Synthesis, Scale-Up, and Quantitative Optical Spectroscopy.
    Woomer AH; Farnsworth TW; Hu J; Wells RA; Donley CL; Warren SC
    ACS Nano; 2015 Sep; 9(9):8869-84. PubMed ID: 26256770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum confinement and edge effects on electronic properties of zigzag green phosphorene nanoribbons.
    Ma C; Ma T; Peng X
    J Phys Condens Matter; 2020 Apr; 32(17):175301. PubMed ID: 31914431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strain-tunable electronic and optical properties of novel anisotropic green phosphorene: a first-principles study.
    Chen QY; Liu MY; Cao C; He Y
    Nanotechnology; 2019 Aug; 30(33):335710. PubMed ID: 31035273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unzipping of black phosphorus to form zigzag-phosphorene nanobelts.
    Liu Z; Sun Y; Cao H; Xie D; Li W; Wang J; Cheetham AK
    Nat Commun; 2020 Aug; 11(1):3917. PubMed ID: 32764557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorene nanoribbon as a promising candidate for thermoelectric applications.
    Zhang J; Liu HJ; Cheng L; Wei J; Liang JH; Fan DD; Shi J; Tang XF; Zhang QJ
    Sci Rep; 2014 Sep; 4():6452. PubMed ID: 25245326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermoelectric properties of armchair phosphorene nanoribbons in the presence of vacancy-induced impurity band.
    Rezaei M; Karbaschi H; Amini M; Soltani M; Rashedi G
    Nanotechnology; 2021 Jun; 32(37):. PubMed ID: 34098541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signature of excitonic insulators in phosphorene nanoribbons.
    Felipe Pereira de Oliveira A; Luisa da Rosa A; Cavalheiro Dias A
    J Phys Condens Matter; 2024 May; 36(34):. PubMed ID: 38744299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clar sextet analysis of triangular, rectangular, and honeycomb graphene antidot lattices.
    Petersen R; Pedersen TG; Jauho AP
    ACS Nano; 2011 Jan; 5(1):523-9. PubMed ID: 21158482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.