These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 28666099)
1. Tumor-selective lipopolyplex encapsulated small active RNA hampers colorectal cancer growth in vitro and in orthotopic murine. Wang LL; Feng CL; Zheng WS; Huang S; Zhang WX; Wu HN; Zhan Y; Han YX; Wu S; Jiang JD Biomaterials; 2017 Oct; 141():13-28. PubMed ID: 28666099 [TBL] [Abstract][Full Text] [Related]
2. Specific up-regulation of p21 by a small active RNA sequence suppresses human colorectal cancer growth. Wang LL; Guo HH; Zhan Y; Feng CL; Huang S; Han YX; Zheng WS; Jiang JD Oncotarget; 2017 Apr; 8(15):25055-25065. PubMed ID: 28445988 [TBL] [Abstract][Full Text] [Related]
3. Self-assembling HA/PEI/dsRNA-p21 ternary complexes for CD44 mediated small active RNA delivery to colorectal cancer. Feng CL; Han YX; Guo HH; Ma XL; Wang ZQ; Wang LL; Zheng WS; Jiang JD Drug Deliv; 2017 Nov; 24(1):1537-1548. PubMed ID: 28994324 [TBL] [Abstract][Full Text] [Related]
4. Intravesical delivery of small activating RNA formulated into lipid nanoparticles inhibits orthotopic bladder tumor growth. Kang MR; Yang G; Place RF; Charisse K; Epstein-Barash H; Manoharan M; Li LC Cancer Res; 2012 Oct; 72(19):5069-79. PubMed ID: 22869584 [TBL] [Abstract][Full Text] [Related]
5. Promoter-associated small double-stranded RNA interacts with heterogeneous nuclear ribonucleoprotein A2/B1 to induce transcriptional activation. Hu J; Chen Z; Xia D; Wu J; Xu H; Ye ZQ Biochem J; 2012 Nov; 447(3):407-16. PubMed ID: 23035981 [TBL] [Abstract][Full Text] [Related]
6. Targeted induction of endogenous NKX3-1 by small activating RNA inhibits prostate tumor growth. Ren S; Kang MR; Wang J; Huang V; Place RF; Sun Y; Li LC Prostate; 2013 Oct; 73(14):1591-601. PubMed ID: 23836514 [TBL] [Abstract][Full Text] [Related]
7. Atypical role of sprouty in p21 dependent inhibition of cell proliferation in colorectal cancer. Zhang Q; Shim K; Wright K; Jurkevich A; Khare S Mol Carcinog; 2016 Sep; 55(9):1355-68. PubMed ID: 26293890 [TBL] [Abstract][Full Text] [Related]
9. Hyaluronic acid-nimesulide conjugates as anticancer drugs against CD44-overexpressing HT-29 colorectal cancer in vitro and in vivo. Jian YS; Chen CW; Lin CA; Yu HP; Lin HY; Liao MY; Wu SH; Lin YF; Lai PS Int J Nanomedicine; 2017; 12():2315-2333. PubMed ID: 28392690 [TBL] [Abstract][Full Text] [Related]
10. CD44 targeted delivery of siRNA by using HA-decorated nanotechnologies for KRAS silencing in cancer treatment. Tirella A; Kloc-Muniak K; Good L; Ridden J; Ashford M; Puri S; Tirelli N Int J Pharm; 2019 Apr; 561():114-123. PubMed ID: 30822503 [TBL] [Abstract][Full Text] [Related]
11. SNHG6 Promotes Tumor Growth via Repression of P21 in Colorectal Cancer. Li Z; Qiu R; Qiu X; Tian T Cell Physiol Biochem; 2018; 49(2):463-478. PubMed ID: 30157475 [TBL] [Abstract][Full Text] [Related]
12. Demystifying the mechanistic and functional aspects of p21 gene activation with double-stranded RNAs in human cancer cells. Wu HL; Li SM; Hu J; Yu X; Xu H; Chen Z; Ye ZQ J Exp Clin Cancer Res; 2016 Sep; 35(1):145. PubMed ID: 27639690 [TBL] [Abstract][Full Text] [Related]
13. CD44-targeting for antitumor drug delivery: a new SN-38-hyaluronan bioconjugate for locoregional treatment of peritoneal carcinomatosis. Serafino A; Zonfrillo M; Andreola F; Psaila R; Mercuri L; Moroni N; Renier D; Campisi M; Secchieri C; Pierimarchi P Curr Cancer Drug Targets; 2011 Jun; 11(5):572-85. PubMed ID: 21486216 [TBL] [Abstract][Full Text] [Related]
14. saRNA-guided Ago2 targets the RITA complex to promoters to stimulate transcription. Portnoy V; Lin SH; Li KH; Burlingame A; Hu ZH; Li H; Li LC Cell Res; 2016 Mar; 26(3):320-35. PubMed ID: 26902284 [TBL] [Abstract][Full Text] [Related]
15. saKLK1-374 is more difficult to induce KLK1 expression in normal prostate cell lines than that in prostate cancer cell lines: Rethinking the universality of RNA activation. Zhang M; Lin D; Luo C; Wei P; Cui K; Chen K; Chen Z Biochem Biophys Res Commun; 2023 Feb; 643():157-168. PubMed ID: 36610381 [TBL] [Abstract][Full Text] [Related]
16. Hypoxia-inducible bidirectional shRNA expression vector delivery using PEI/chitosan-TBA copolymers for colorectal Cancer gene therapy. Javan B; Atyabi F; Shahbazi M Life Sci; 2018 Jun; 202():140-151. PubMed ID: 29656061 [TBL] [Abstract][Full Text] [Related]
17. The Therapeutic Potential of Small Activating RNAs for Colorectal Carcinoma. Zheng B; Mai Q; Jiang J; Zhou Q Curr Gene Ther; 2019; 19(3):140-146. PubMed ID: 31284860 [TBL] [Abstract][Full Text] [Related]
18. Selective delivery of PLXDC1 small interfering RNA to endothelial cells for anti-angiogenesis tumor therapy using CD44-targeted chitosan nanoparticles for epithelial ovarian cancer. Kim GH; Won JE; Byeon Y; Kim MG; Wi TI; Lee JM; Park YY; Lee JW; Kang TH; Jung ID; Shin BC; Ahn HJ; Lee YJ; Sood AK; Han HD; Park YM Drug Deliv; 2018 Nov; 25(1):1394-1402. PubMed ID: 29890852 [TBL] [Abstract][Full Text] [Related]
19. Progesterone receptor activation is required for folic acid-induced anti-proliferation in colorectal cancer cell lines. Kuo CT; Lee WS Cancer Lett; 2016 Aug; 378(2):104-10. PubMed ID: 27233474 [TBL] [Abstract][Full Text] [Related]
20. Down-Regulated LncRNA-HOTAIR Suppressed Colorectal Cancer Cell Proliferation, Invasion, and Migration by Mediating p21. Lin K; Jiang H; Zhang LL; Jiang Y; Yang YX; Qiu GD; She YQ; Zheng JT; Chen C; Fang L; Zhang SY Dig Dis Sci; 2018 Sep; 63(9):2320-2331. PubMed ID: 29808247 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]