These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 28666140)

  • 1. Bandgap measurement of high refractive index materials by off-axis EELS.
    Vatanparast M; Egoavil R; Reenaas TW; Verbeeck J; Holmestad R; Vullum PE
    Ultramicroscopy; 2017 Nov; 182():92-98. PubMed ID: 28666140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cerenkov losses: a limit for bandgap determination and Kramers-Kronig analysis.
    Stöger-Pollach M; Franco H; Schattschneider P; Lazar S; Schaffer B; Grogger W; Zandbergen HW
    Micron; 2006; 37(5):396-402. PubMed ID: 16551502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of relativistic energy losses on bandgap determination using valence EELS.
    Stöger-Pollach M; Schattschneider P
    Ultramicroscopy; 2007 Nov; 107(12):1178-85. PubMed ID: 17399902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Čerenkov limit of Si, GaAs and GaP in electron energy loss spectrometry.
    Horák M; Stöger-Pollach M
    Ultramicroscopy; 2015 Oct; 157():73-8. PubMed ID: 26094202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bandgap measurement of thin dielectric films using monochromated STEM-EELS.
    Park J; Heo S; Chung JG; Kim H; Lee H; Kim K; Park GS
    Ultramicroscopy; 2009 Aug; 109(9):1183-8. PubMed ID: 19515492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring possibilities of band gap measurement with off-axis EELS in TEM.
    Korneychuk S; Partoens B; Guzzinati G; Ramaneti R; Derluyn J; Haenen K; Verbeeck J
    Ultramicroscopy; 2018 Jun; 189():76-84. PubMed ID: 29626835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale EELS analysis of dielectric function and bandgap properties in gaN and related materials.
    Brockt G; Lakner H
    Micron; 2000 Aug; 31(4):435-40. PubMed ID: 10741613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibrational and valence aloof beam EELS: A potential tool for nondestructive characterization of nanoparticle surfaces.
    Crozier PA
    Ultramicroscopy; 2017 Sep; 180():104-114. PubMed ID: 28377216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the validity of the Čerenkov limit as a criterion for precise band gap measurements by VEELS.
    Erni R
    Ultramicroscopy; 2016 Jan; 160():80-83. PubMed ID: 26476018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advantages of a monochromator for bandgap measurements using electron energy-loss spectroscopy.
    Kimoto K; Kothleitner G; Grogger W; Matsui Y; Hofer F
    Micron; 2005; 36(2):185-9. PubMed ID: 15629650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron energy-loss spectroscopy (EELS) with a cold-field emission scanning electron microscope at low accelerating voltage in transmission mode.
    Brodusch N; Demers H; Gellé A; Moores A; Gauvin R
    Ultramicroscopy; 2019 Aug; 203():21-36. PubMed ID: 30595397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bandgap determination from individual orthorhombic thin cesium lead bromide nanosheets by electron energy-loss spectroscopy.
    Brescia R; Toso S; Ramasse Q; Manna L; Shamsi J; Downing C; Calzolari A; Bertoni G
    Nanoscale Horiz; 2020 Nov; 5(12):1610-1617. PubMed ID: 33140817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution monochromated electron energy-loss spectroscopy of organic photovoltaic materials.
    Alexander JA; Scheltens FJ; Drummy LF; Durstock MF; Hage FS; Ramasse QM; McComb DW
    Ultramicroscopy; 2017 Sep; 180():125-132. PubMed ID: 28284703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charting the low-loss region in electron energy loss spectroscopy with machine learning.
    Roest LI; van Heijst SE; Maduro L; Rojo J; Conesa-Boj S
    Ultramicroscopy; 2021 Mar; 222():113202. PubMed ID: 33453606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic structure analysis of (In, Ga, Al) N heterostructures on the nanometre scale using EELS.
    Lakner H; Rafferty B; Brockt G
    J Microsc; 1999 Apr; 194(1):79-83. PubMed ID: 10320542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of experimental conditions on localized surface plasmon resonances measurement by electron energy loss spectroscopy.
    Horák M; Šikola T
    Ultramicroscopy; 2020 Sep; 216():113044. PubMed ID: 32535410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of resolution in core-loss and low-loss spectroscopy in a monochromated microscope.
    Lazar S; Botton GA; Zandbergen HW
    Ultramicroscopy; 2006; 106(11-12):1091-103. PubMed ID: 16872750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of dielectric function and bandgap of germanium telluride using monochromated electron energy-loss spectroscopy.
    Oh JS; Jo KJ; Kang MC; An BS; Kwon Y; Lim HW; Cho MH; Baik H; Yang CW
    Micron; 2023 Sep; 172():103487. PubMed ID: 37285687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring bandgap states in individual non-stoichiometric oxide nanoparticles using monochromated STEM EELS: The Praseodymium-ceria case.
    Bowman WJ; March K; Hernandez CA; Crozier PA
    Ultramicroscopy; 2016 Aug; 167():5-10. PubMed ID: 27152715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of the electronic structure of carbon films using electron energy loss spectroscopy.
    Alexandro I; Papworth AJ; Rafferty B; Amaratunga GAJ ; Kiely CJ; Brown LM
    Ultramicroscopy; 2001 Nov; 90(1):39-45. PubMed ID: 11794628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.