These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 28666163)

  • 1. Macroporous monoliths for biodegradation study of polymer particles considered as drug delivery systems.
    Volokitina MV; Korzhikov-Vlakh VA; Tennikova TB; Korzhikova-Vlakh EG
    J Pharm Biomed Anal; 2017 Oct; 145():169-177. PubMed ID: 28666163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilized enzyme reactors based on monoliths: Effect of pore size and enzyme loading on biocatalytic process.
    Volokitina MV; Nikitina AV; Tennikova TB; Korzhikova-Vlakh EG
    Electrophoresis; 2017 Nov; 38(22-23):2931-2939. PubMed ID: 28834560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymer monoliths as efficient solid phases for enzymatic polynucleotide degradation followed by fast HPLC analysis.
    Volokitina MV; Vlakh EG; Platonova GA; Vinokhodov DO; Tennikova TB
    J Sep Sci; 2013 Sep; 36(17):2793-805. PubMed ID: 23813658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Less common applications of monoliths: I. Microscale protein mapping with proteolytic enzymes immobilized on monolithic supports.
    Svec F
    Electrophoresis; 2006 Mar; 27(5-6):947-61. PubMed ID: 16470758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macroporous Polymer Monoliths for Affinity Chromatography and Solid-Phase Enzyme Processing.
    Korzhikova-Vlakh EG; Platonova GA; Tennikova TB
    Methods Mol Biol; 2021; 2178():251-284. PubMed ID: 33128755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards automation in protein digestion: Development of a monolithic trypsin immobilized reactor for highly efficient on-line digestion and analysis.
    Naldi M; Černigoj U; Štrancar A; Bartolini M
    Talanta; 2017 May; 167():143-157. PubMed ID: 28340705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New monolithic chromatographic supports for macromolecules immobilization: challenges and opportunities.
    Calleri E; Ambrosini S; Temporini C; Massolini G
    J Pharm Biomed Anal; 2012 Oct; 69():64-76. PubMed ID: 22386208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow-through enzymatic reactors using polymer monoliths: From motivation to application.
    Mao Y; Fan R; Li R; Ye X; Kulozik U
    Electrophoresis; 2021 Dec; 42(24):2599-2614. PubMed ID: 33314167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Xylan degradation improved by a combination of monolithic columns bearing immobilized recombinant β-xylosidase from Aspergillus awamori X-100 and Grindamyl H121 β-xylanase.
    Volokitina MV; Bobrov KS; Piens K; Eneyskaya EV; Tennikova TB; Vlakh EG; Kulminskaya AA
    Biotechnol J; 2015 Jan; 10(1):210-21. PubMed ID: 25367775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocatalytic reactors based on ribonuclease A immobilized on macroporous monolithic supports.
    Ponomareva EA; Volokitina MV; Vinokhodov DO; Vlakh EG; Tennikova TB
    Anal Bioanal Chem; 2013 Mar; 405(7):2195-206. PubMed ID: 23010845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of CIM monoliths as enzyme reactors.
    Vodopivec M; Podgornik A; Berovic M; Strancar A
    J Chromatogr B Analyt Technol Biomed Life Sci; 2003 Sep; 795(1):105-13. PubMed ID: 12957174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HPLC analysis of synthetic polymers on short monolithic columns.
    Maksimova E; Vlakh E; Sinitsyna E; Tennikova T
    J Sep Sci; 2013 Dec; 36(23):3741-9. PubMed ID: 24106069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous monoliths for on-line sample preparation: A review.
    Masini JC; Svec F
    Anal Chim Acta; 2017 Apr; 964():24-44. PubMed ID: 28351637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of reactive porous polymer supports for high throughput bioreactors: poly(2-vinyl-4,4-dimethylazlactone-co-acrylamide- co-ethylene dimethacrylate) monoliths.
    Xie S; Svec F; Fréchet JM
    Biotechnol Bioeng; 1999 Jan; 62(1):30-5. PubMed ID: 10099510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow-through immobilized enzyme reactors based on monoliths: I. Preparation of heterogeneous biocatalysts.
    Vlakh EG; Tennikova TB
    J Sep Sci; 2013 Jan; 36(1):110-27. PubMed ID: 23292849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Preparation and optimization of polymer-based monolithic stationary phase for high performance liquid chromatography].
    Wei Y; Zou J; Yang C; Zhang Q; Zhang W; Wang F; Li T
    Se Pu; 2005 May; 23(3):251-4. PubMed ID: 16124566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable poly-D,L-lactic acid-polyethylene glycol block copolymers as a BMP delivery system for inducing bone.
    Saito N; Okada T; Horiuchi H; Murakami N; Takahashi J; Nawata M; Ota H; Miyamoto S; Nozaki K; Takaoka K
    J Bone Joint Surg Am; 2001; 83-A Suppl 1(Pt 2):S92-8. PubMed ID: 11314801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-line microfluidic immobilized-enzyme reactors: A new tool for characterizing synthetic polymers.
    Wouters B; Pirok BWJ; Soulis D; Garmendia Perticarini RC; Fokker S; van den Hurk RS; Skolimowski M; Peters RAH; Schoenmakers PJ
    Anal Chim Acta; 2019 Apr; 1053():62-69. PubMed ID: 30712570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New designs of macroporous polymers and supports: from separation to biocatalysis.
    Svec F; Fréchet JM
    Science; 1996 Jul; 273(5272):205-11. PubMed ID: 8662498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Affinity processes realized on high-flow-through methacrylate-based macroporous monoliths.
    Platonova GA; Tennikova TB
    J Chromatogr A; 2005 Feb; 1065(1):19-28. PubMed ID: 15782946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.