These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 28666197)

  • 1. Evaluation of pyritic mine tailings as a plant growth substrate.
    Roseby SJ; Kopittke PM; Mulligan DR; Menzies NW
    J Environ Manage; 2017 Oct; 201():207-214. PubMed ID: 28666197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporating rock in surface covers improves the establishment of native pioneer vegetation on alkaline mine tailings.
    Cross AT; Zhong H; Lambers H
    Sci Total Environ; 2021 May; 768():145373. PubMed ID: 33736352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytostabilization of gold mine tailings, New Zealand. Part 1: Plant establishment in alkaline saline substrate.
    Mains D; Craw D; Rufaut CG; Smith CM
    Int J Phytoremediation; 2006; 8(2):131-47. PubMed ID: 16924962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Treatment impacts on temporal microbial community dynamics during phytostabilization of acid-generating mine tailings in semiarid regions.
    Valentín-Vargas A; Neilson JW; Root RA; Chorover J; Maier RM
    Sci Total Environ; 2018 Mar; 618():357-368. PubMed ID: 29132003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings.
    Huang L; Li X; Nguyen TA
    PLoS One; 2015; 10(8):e0135364. PubMed ID: 26295582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alternative waste residue materials for passive in situ prevention of sulfide-mine tailings oxidation: a field evaluation.
    Nason P; Johnson RH; Neuschütz C; Alakangas L; Öhlander B
    J Hazard Mater; 2014 Feb; 267():245-54. PubMed ID: 24462894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effects of Three Industrial Organic Wastes as Amendments on Plant Growth and the Biochemical Properties of a Pb/Zn Mine Tailings].
    Peng XZ; Yang SX; Li FM; Cao JB; Peng QJ
    Huan Jing Ke Xue; 2016 Jan; 37(1):301-8. PubMed ID: 27078971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Young calcareous soil chronosequences as a model for ecological restoration on alkaline mine tailings.
    Cross AT; Lambers H
    Sci Total Environ; 2017 Dec; 607-608():168-175. PubMed ID: 28689121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vegetation successfully prevents oxidization of sulfide minerals in mine tailings.
    Li Y; Sun Q; Zhan J; Yang Y; Wang D
    J Environ Manage; 2016 Jul; 177():153-60. PubMed ID: 27093236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of secondary minerals in the acid generating potential of weathered mine tailings: Crystal-chemistry characterization and closed mine site management involvement.
    Elghali A; Benzaazoua M; Bouzahzah H; Abdelmoula M; Dynes JJ; Jamieson HE
    Sci Total Environ; 2021 Aug; 784():147105. PubMed ID: 33905938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A critical review of the effects of gold cyanide-bearing tailings solutions on wildlife.
    Donato DB; Nichols O; Possingham H; Moore M; Ricci PF; Noller BN
    Environ Int; 2007 Oct; 33(7):974-84. PubMed ID: 17540445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current approaches for mitigating acid mine drainage.
    Sahoo PK; Kim K; Equeenuddin SM; Powell MA
    Rev Environ Contam Toxicol; 2013; 226():1-32. PubMed ID: 23625128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revegetation of extremely acid mine soils based on aided phytostabilization: A case study from southern China.
    Yang SX; Liao B; Yang ZH; Chai LY; Li JT
    Sci Total Environ; 2016 Aug; 562():427-434. PubMed ID: 27100018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sulfide oxidation and acid mine drainage formation within two active tailings impoundments in the Golden Quadrangle of the Apuseni Mountains, Romania.
    Sima M; Dold B; Frei L; Senila M; Balteanu D; Zobrist J
    J Hazard Mater; 2011 May; 189(3):624-39. PubMed ID: 21316846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of pyrite oxidation in fresh mine tailings under near-neutral conditions.
    Alakangas L; Lundberg A; Nason P
    J Environ Monit; 2012 Aug; 14(8):2245-53. PubMed ID: 22777533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative performance of cover systems to prevent acid mine drainage from pre-oxidized tailings: A numerical hydro-geochemical assessment.
    Pabst T; Bussière B; Aubertin M; Molson J
    J Contam Hydrol; 2018 Jul; 214():39-53. PubMed ID: 29861334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid plant-cover establishment on gold mine tailings in southern New Zealand: glasshouse screening trials.
    Schroeder K; Rufaut CG; Smith C; Mains D; Craw D
    Int J Phytoremediation; 2005; 7(4):307-22. PubMed ID: 16463543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 5-year leaching experiments to evaluate a modified bauxite residue: remediation of sulfidic mine tailings.
    Merdy P; Parker A; Chen C; Hennebert P
    Environ Sci Pollut Res Int; 2023 Sep; 30(42):96486-96498. PubMed ID: 37580475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of biochar on mine tailings: effects and perspectives for land reclamation.
    Fellet G; Marchiol L; Delle Vedove G; Peressotti A
    Chemosphere; 2011 May; 83(9):1262-7. PubMed ID: 21501855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review on in situ phytoremediation of mine tailings.
    Wang L; Ji B; Hu Y; Liu R; Sun W
    Chemosphere; 2017 Oct; 184():594-600. PubMed ID: 28623832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.