These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 28666320)
41. Inferring a transcriptional regulatory network from gene expression data using nonlinear manifold embedding. Zare H; Kaveh M; Khodursky A PLoS One; 2011; 6(8):e21969. PubMed ID: 21857910 [TBL] [Abstract][Full Text] [Related]
42. Determining transcription factor activity from microarray data using Bayesian Markov chain Monte Carlo sampling. Kossenkov AV; Peterson AJ; Ochs MF Stud Health Technol Inform; 2007; 129(Pt 2):1250-4. PubMed ID: 17911915 [TBL] [Abstract][Full Text] [Related]
43. Construction and analysis of microRNA-transcription factor regulation network in Arabidopsis. Tang L; Zhang Z; Gu P; Chen M IET Syst Biol; 2014 Jun; 8(3):76-86. PubMed ID: 25014374 [TBL] [Abstract][Full Text] [Related]
44. Inferring microRNA and transcription factor regulatory networks in heterogeneous data. Le TD; Liu L; Liu B; Tsykin A; Goodall GJ; Satou K; Li J BMC Bioinformatics; 2013 Mar; 14():92. PubMed ID: 23497388 [TBL] [Abstract][Full Text] [Related]
45. QSSPN: dynamic simulation of molecular interaction networks describing gene regulation, signalling and whole-cell metabolism in human cells. Fisher CP; Plant NJ; Moore JB; Kierzek AM Bioinformatics; 2013 Dec; 29(24):3181-90. PubMed ID: 24064420 [TBL] [Abstract][Full Text] [Related]
46. Logic-based analysis of gene expression data predicts association between TNF, TGFB1 and EGF pathways in basal-like breast cancer. Jo K; Santos-Buitrago B; Kim M; Rhee S; Talcott C; Kim S Methods; 2020 Jul; 179():89-100. PubMed ID: 32445696 [TBL] [Abstract][Full Text] [Related]
47. TF2Network: predicting transcription factor regulators and gene regulatory networks in Arabidopsis using publicly available binding site information. Kulkarni SR; Vaneechoutte D; Van de Velde J; Vandepoele K Nucleic Acids Res; 2018 Apr; 46(6):e31. PubMed ID: 29272447 [TBL] [Abstract][Full Text] [Related]
48. A rank-based statistical test for measuring synergistic effects between two gene sets. Shiraishi Y; Okada-Hatakeyama M; Miyano S Bioinformatics; 2011 Sep; 27(17):2399-405. PubMed ID: 21700673 [TBL] [Abstract][Full Text] [Related]
50. Inferring transcriptional regulatory networks from high-throughput data. Wang RS; Wang Y; Zhang XS; Chen L Bioinformatics; 2007 Nov; 23(22):3056-64. PubMed ID: 17890736 [TBL] [Abstract][Full Text] [Related]
51. Inferring Gene Regulatory Networks in the Arabidopsis Root Using a Dynamic Bayesian Network Approach. de Luis Balaguer MA; Sozzani R Methods Mol Biol; 2017; 1629():331-348. PubMed ID: 28623595 [TBL] [Abstract][Full Text] [Related]
52. An ensemble learning approach to reverse-engineering transcriptional regulatory networks from time-series gene expression data. Ruan J; Deng Y; Perkins EJ; Zhang W BMC Genomics; 2009 Jul; 10 Suppl 1(Suppl 1):S8. PubMed ID: 19594885 [TBL] [Abstract][Full Text] [Related]
53. Inferring the perturbation time from biological time course data. Yang J; Penfold CA; Grant MR; Rattray M Bioinformatics; 2016 Oct; 32(19):2956-64. PubMed ID: 27288495 [TBL] [Abstract][Full Text] [Related]
54. Discovering gene expression patterns in time course microarray experiments by ANOVA-SCA. Nueda MJ; Conesa A; Westerhuis JA; Hoefsloot HC; Smilde AK; Talón M; Ferrer A Bioinformatics; 2007 Jul; 23(14):1792-800. PubMed ID: 17519250 [TBL] [Abstract][Full Text] [Related]
55. Quantitative inference of dynamic regulatory pathways via microarray data. Chang WC; Li CW; Chen BS BMC Bioinformatics; 2005 Mar; 6():44. PubMed ID: 15748298 [TBL] [Abstract][Full Text] [Related]